
Open64 Compiler
Whirl Intermediate Representation

August 3, 2007

2

Contents

1 Whirl Abstract Syntax Tree 5
1.1 Introduction . 5
1.2 Compilation Targets . 5
1.3 The Levels of WHIRL . 5

1.3.1 Very High (VH) WHIRL . 6
1.3.2 High (H) WHIRL . 8
1.3.3 Mid (M) WHIRL . 8
1.3.4 Low (L) WHIRL . 8
1.3.5 Very Low (VL) WHIRL . 8

1.4 The Components of WHIRL . 8
1.4.1 Operators . 9
1.4.2 Result and Descriptor Types . 9
1.4.3 Supported Data Types . 9
1.4.4 Kid Pointers . 10
1.4.5 Next and Previous Pointers . 10
1.4.6 Offset . 10
1.4.7 Mapping Mechanism . 10
1.4.8 Source Position Information . 11
1.4.9 Additional Fields . 11
1.4.10 WHIRL Node Layout . 11

1.5 Structured Control Flow Statements . 11
1.6 Other Control Flow Statements . 13
1.7 Calls . 15
1.8 Other Statements . 17
1.9 Memory Accesses . 19
1.10 Bit-field Representation . 21
1.11 Pseudo-registers . 22
1.12 Other Leaf Operators . 23
1.13 Type Conversions . 24
1.14 High Level Type Specification . 25
1.15 Expression Operators . 26

1.15.1 Unary Operations . 27
1.15.2 Binary Operations . 29
1.15.3 Ternary Operations . 32
1.15.4 N-ary Operations . 33

1.16 Intrinsics . 34
1.17 Aggregates Specification . 34
1.18 ASCII WHIRL Format . 35

3

4 CONTENTS

2 Whirl Symbol Table 37
2.1 Introduction and Overview . 37
2.2 SCOPE . 39
2.3 ST TAB . 39
2.4 ST IDX . 39

2.4.1 ST Entry . 39
2.4.2 Symbol Class and Storage Class . 40
2.4.3 Export Scopes . 42
2.4.4 ST Flags . 45
2.4.5 Exception Handling Region . 49
2.4.6 Semantics of Weak Symbols . 50

2.5 PU TAB . 50
2.5.1 TY IDX . 54

2.6 TY TAB . 54
2.6.1 TY entry . 54

2.7 FLD TAB . 56
2.8 TYLIST TAB . 58
2.9 ARB TAB . 58
2.10 TCON TAB . 59
2.11 INITO TAB . 59

2.11.1 INITO IDX . 59
2.11.2 INITO Entry . 60

2.12 INITV TAB . 60
2.13 BLK TAB . 61
2.14 STR TAB . 62
2.15 TCON STR TAB . 62
2.16 LABEL TAB . 62
2.17 PREG TAB . 63
2.18 ST ATTR TAB . 64
2.19 FILE INFO . 64
2.20 Backend-Specific Tables . 64

2.20.1 BE ST TAB . 65
2.21 Symbol Table Interfaces . 66
2.22 Symbol Table Programming Primer . 66

3 Appendix 69

Chapter 1

Whirl Abstract Syntax Tree

1.1 Introduction

This document discusses WHIRL, the intermediate language (IR) for the Open64 compiler. Using a common
IR enables a compiler to support multiple languages and multiple processor targets. The different front-ends
of the Open64 compiler translate the different languages to WHIRL. The Open64 compiler has a sophisticated
back-end composed of multiple components: the inter-procedural analyzer and optimizer (IPA), loop-nest
optimizer (LNO), global scalar optimizer (WOPT) and code generator (CG). WHIRL serves as the common
interface among all these components.

Adapting a common intermediate representation for as many phases ofthe compilation process as possible
has numerous advantages. In the compilation process, some optimization passes like constant propagation,
dead code elimination, and various liveness problems, have to be re-applied at different times and in different
components of the compiler. With a common IR, a single implementation of an optimization pass is sufficient.
Communication between the compilation phases is also easier, since they work under the same medium.

WHIRL is designed to support C, C++, Java, FORTRAN77 and FORTRAN90. It is expected that
additional programming languages can be targeted to WHIRL without substantial difficulties.

This document is intended to be a clear, precise and complete specification of WHIRL. A compiler front-
end vendor should be able to port their front-end to WHIRL based on this document and using the WHIRL
software package. The generated WHIRL code should not assume any semantics other than what is specified
in this document; otherwise it is considered incorrect WHIRL.

The WHIRL symbol table is described in Chapter 2

1.2 Compilation Targets

WHIRL is designed to support effective compilation of program code to multiple target processor architec-
tures. As such, the WHIRL generated by the front-ends does not assume specific target processor character-
istics. Instead, it targets the abstract C machine that models the semantics of the C programming language.
In particular, integers are promoted to either 32 or 64 bits before being involved in computations.

As compilation proceeds, the code sequence at lower levels of WHIRL will more accurately reflect the
target machine’s support of program operations. At lower levels of WHIRL, the code generated is different
for different target processor, because the representation is restricted to what is actually supported in the
target ISA. This is necessary for the back-end to produce optimal code sequences for each target processor.
More details are given in the next Section.

1.3 The Levels of WHIRL

Nowadays, optimization is an indispensible part of the compiler, and compiler back-ends have grown to
become larger and more complicated. As we add to the classes of optimizations that the compiler has
to perform, we are increasing the complexity of the compiler back-end at the same time. With each new

5

6 CHAPTER 1. WHIRL ABSTRACT SYNTAX TREE

Characteristics High-level IR Low-level IR
kinds of constructs many few
length of code sequences short long
form hierarchical flat

Table 1.1: Differences between high-level and low-level representations.

optimization that we add, we have to be more concerned about the robustness of the compiler, because each
new optimization is one more source of instability for the entire compiler. Thus, it is necessary to find ways
to simplify each optimization without compromising on the quality of the output code. Since optimizations
operate on IRs, it is important that we design the most efficient form of representation for each optimization
phase to work on.

Compilation can be viewed as a process of gradual transition from the high level language constructs to
the low level machine instructions. In between, there are different levels of IR possible. The closer an IR is
to the source language, the higher is its level. The more an IR resembles the machine instructions, the lower
its level. Table 1.1 contrasts the general characteristics between high-level and low-level representations.

Theoretically speaking, all optimizations can be performed on the lowest level machine instructions,
because any optimization effect has to filter down to and expressible in them. This is, however, undesirable
because of the following reasons:

1. Information content – Since high level program representation resembles the way the original program
was written, it provides the optimizer with more exact information about the program, thus allowing
it to do a better job in optimizing the program.

2. Granularity – By matching the granularity of the program representation with the granularity of the
constructs that each optimization phase manipulates, the optimization phases can be implemented
with less effort and operate much more efficiently.

3. Variations – The optimizer has to deal with more possible variations in the code sequences that perform
a given task in low level IR, making it harder to recognize specific program semantics.

In general, the higher the level of the IR, the more assumptions the optimization phase can make about
its representation, thus allowing it to gather information more efficiently and streamline its work load. In
light of this, our approach in Open64 is to implement each optimization at as high a level as possible without
affecting the quality of its work.

We have defined WHIRL to be capable of representing any level of IR except the level that corresponds
to the machine instructions. The Open64 back-end performs a complete repertoire of optimizations. We
define different levels of WHIRL, and define each optimization phase to work at a specific level of WHIRL.
The front-ends generates the highest level of WHIRL. Optimization proceeds together with the process of
continuous lowering, in which a WHIRL lowerer is called to translate WHIRL from the current level to the
next lower level. At the end, the code generator translates the lowest level of WHIRL into its own internal
representation that matches the target machine instructions. WHIRL thus serves as the common IR interface
among all back end components. Because lowering is done only gradually, a secondary benefit is that each
lowering step is simpler and easier.

1.3.1 Very High (VH) WHIRL

This level of WHIRL is output by the front-ends, and faithfully corresponds to the structure of the program
in the source code. Optimizations performed on this level of WHIRL can be perceived as optimizing with
respect to the programming language constructs. This level of WHIRL can be translated back to C and
FORTRAN source code with only minor loss of semantics. The tools whirl2c, whirl2f and whirl2f90 are
provided for this purpose.

In this level of WHIRL, calls are allowed to be nested. The COMMA, RCOMMA and CSELECT opera-
tors are allowed. The operators related to FORTRAN90 aggregates TRIPLET, ARRAYEXP, ARRSECTION
and WHERE are allowed. These constructs are not allowed in lower levels of WHIRL.

1.3. THE LEVELS OF WHIRL 7

Optimizer Representation Translator/Lowering Action

C
C++

↓
Java

Bcode

↓
Fortran

90

↓ Front Ends

VHO
standalone inliner

Very High
WHIRL

↓ Lower Aggregates
Un-nest calls
Lower COMMAs, RCOMMAs

PA
PREOPT

LNO

High WHIRL

↓
Lower ARRAYs
Lower Complex Numbers
Lower high-level control flow
Lower IO
Lower bit fields
Spawn nested procedures

for parallel regions
WOPT
RVI1

Mid WHIRL

↓

Lower intrinsics to calls
Generate simulation code for quads
All data mapped to segments
Lower loads to final form
Expose code sequences for

constants and addresses
Expose $gp for shared
Expose static link for nested

procedures

RVI2 Low WHIRL

↓ Map opcodes to target machine
opcodes

CG Very Low WHIRL

↓ Code Generation

CG

CG Machine
Instruction

Representation

Figure 1.1: Continuous Lowering in the Open64 Compiler

The Very High WHIRL Optimizer (VHO) and stand-alone inliner work on VH WHIRL.

8 CHAPTER 1. WHIRL ABSTRACT SYNTAX TREE

1.3.2 High (H) WHIRL

At this level of WHIRL, side effects can only occur at statement boundaries, and control flows are fixed.
As a result, procedure calls are not allowed to be nested, as are statements nested via the COMMA and
RCOMMA operators. This level of WHIRL can also be translated back to C and FORTRAN source code,
though not to very close correspondence to the original source.

In this level of WHIRL, high level control flow constructs are preserved via the operators DO LOOP,
DO WHILE, WHILE DO, IF, CAND and CIOR. The form of FORTRAN I/O statements are preserved
via IO and IO ITEM. The form of array subscripting is preserved via ARRAY. Bit-field accesses can be
represented in high-level form via field-id.

IPA, LNO and the PREOPT part of the global scalar optimizer operate in H WHIRL. Pseudo-registers
can be generated by the compilers to store values. Integer pseudo-registers must be of either 32- or 64- bit
sizes.

1.3.3 Mid (M) WHIRL

At this level of WHIRL, the representation starts to reflect the characteristics of the target ISA. In general,
for maximum optimization effectiveness, each WHIRL instruction should map to one instruction in the target
ISA. A WHIRL instruction that is no-op in the target processor should not be generated. The WHIRL code
sequence should correspond to the final generated code sequence in the target ISA. Pseudo-registers are
assumed to be of sizes corresponding to the sizes of the machine registers, but if their sizes in WHIRL are
smaller, CG can allocate the smaller spill locations when spilling them. Physical registers also start to show
up at this level of WHIRL. Data type B can start to show up at this level of WHIRL if the target provides
predicate registers.

At this level of WHIRL, control flow must be uniformly represented via TRUEBR, FALSEBR, GOTO or
COMPGOTO. IO must have been lowered to calls. ARRAY must have been lowered to address expressions.
Bit-field accesses must be represented via LDBITS, STBITS, ILDBITS and ISTBITS, and then furthered
lowered to EXTRACT BITS and COMPOSE BITS. Such uniform code generation strategies allow common
code sequences to be identified during optimization. The global scalar optimizer WOPT works on M WHIRL.

1.3.4 Low (L) WHIRL

WOPT performs two rounds of register variable identification (RVI). The first round is performed on M
WHIRL. The purpose of L WHIRL is to expose candidates for the second round of RVI.

At L WHIRL, LDID and STID are lowered into ILOAD and ISTORE so that the base address is exposed
to RVI, while ILOAD and ISTORE map to the load and store instructions in the target ISA. Constants,
including LDAs, are lowered into the exact code sequence in which they are generated in the target ISA.
Calls is lowered to PICCALL under shared compilation. COMPGOTO is lowered to XGOTO.

1.3.5 Very Low (VL) WHIRL

This is the lowest level of WHIRL before translation to CG’s machine instruction representation. It exhibits
strict one-to-one correspondence with the target machine instructions. As a result, the generated instruction
mix is very target-dependent.

VL WHIRL only exists internal to CG. Some peephole optimizations are performed on VL WHIRL.

1.4 The Components of WHIRL

A WHIRL file generated by the front-end consists of WHIRL instructions and WHIRL symbol tables. A
separate document describes the structure of the WHIRL symbol tables. WHIRL instructions contain
references to the symbol tables via fields that are ST IDX and TY IDX.

The instruction part of the WHIRL file represents the program code, organized in program units (PUs).
The WHIRL instructions are linked up in strictly tree form, and we refer to each node in the tree as a

1.4. THE COMPONENTS OF WHIRL 9

WHIRL node. DAGs are not allowed. The same WHIRL tree is used to represent both control flow and
expressions. Each PU is a single tree.

We now describe the content of the WHIRL node.

1.4.1 Operators

The operator field in a WHIRL node specifies the operation performed by the instruction. Operators in
WHIRL can be divided into three categories: structured control flow, statements, and expression. These are
represented hierarchically in the tree. It is illegal for a structured control flow operator to be a descendant
of a different type of operator. Similarly, a statement cannot be a descendant of an expression. Statements
have the further restriction that they cannot be nested, i.e. a statement cannot be a descendant of another
statement. There are, however, exceptions to these rules in VH and H WHIRL.

1.4.2 Result and Descriptor Types

The operation specified the WHIRL operator can be further qualified by the result type (res) and descriptor
type (desc). res gives the data type of the result of the operation, while desc gives the data type of the
operands. operator together with res and desc fully specifies an operation. It should not be necessary to
examine the kids of the node in order to determine the exact operation to be performed.

1.4.3 Supported Data Types

The following data types are supported in WHIRL:

• B boolean (value is either 0 or 1)

• I 1 8-bit signed integer.

• I 2 16-bit signed integer.

• I4 32-bit signed integer.

• I8 64-bit signed integer.

• U1 8-bit unsigned integer.

• U2 16-bit unsigned integer.

• U4 32-bit unsigned integer.

• U8 64-bit unsigned integer.

• A4 32-bit address (behaves as unsigned).

• A8 64-bit address (behaves as unsigned).

• F4 32-bit IEEE floating point.

• F8 64-bit IEEE floating point.

• F10 80-bit IEEE floating point.

• F16 128-bit IEEE floating point.

• FQ 128-bit SGI floating point.

• C4 32-bit complex (64 bits total).

• C8 64-bit complex (128 bits total).

• CQ 128-bit complex (256 bits total).

10 CHAPTER 1. WHIRL ABSTRACT SYNTAX TREE

• V Void.

• M struct.

• BS bits.

Type B corresponds to predicate registers, and is useful only if the target has such registers; it is intro-
duced into the compilation starting in M WHIRL by the global optimizer (WOPT). Booleans are represented
as integer types otherwise.

The I1, I2, U1, U2 and BS data types are allowed only in the desc field of memory access operations.
Type A4 and A8 gives the information that the integer value specifies an address, thus allowing the optimizer
to perform more aggressive optimizations. It behaves as unsigned, in the sense that, if there is a choice, it
will be zero-extended instead of sign-extended.

Type FQ is currently supported in software only, and is lowered to F8 in L WHIRL. The complex types
are included because they allow the loop nest optimizer to perform analysis of programs with complex arrays
more efficiently. The complex types are lowered to the floating point types in M WHIRL.

Type M indicates a value made up of composite fields. Type M is not allowed in arithmetic operations.
When a type field is unused for an operator, it should be initialized to V. In the specification of the WHIRL
opcodes, we give the allowed types for res and desc for each operator. We’ll use the following lower case
letters to specify groups of data types:

i Any of I4,I8,U4,U8,A4,A8 integral types

f Any of F4,F8,F10,F16,FQ floating point types

z Any of C4,C8,CQ complex types

1.4.4 Kid Pointers

WHIRL nodes other than BLOCK that are non-leaves contain pointers to their children in the kids array.
For operators that have a variable number of kids, field kid count gives the number of children. BLOCK
nodes contain first and last pointers to a doubly linked list of statements.

1.4.5 Next and Previous Pointers

The children of a BLOCK node must be statement nodes, and statement nodes all have next and previous
pointers which link them together. These fields are NULL for any statement nodes that are not children
of BLOCKs. The first statement of a BLOCK has null previous field, and the last statement has null next
field.

1.4.6 Offset

All load and store opcodes have offset fields. The load-address opcode LDA also uses the offset field to
specify the exact address to load. In the case of the indirect load and store opcodes, there may be code
to compute addresses prior to the loads and stores. In VH and H WHIRL, it is not legal to fold the offset
fields in either the load and store opcodes or LDA into the address computation. Doing this will impact the
ability of the loop nest optimizer to do data dependence analysis.

The offset field is used to keep other contents for other operators.

1.4.7 Mapping Mechanism

Different phases of the compiler may need to store additional information associated with individual whirl
nodes. Rather than providing a pointer in each tree node for every conceivable data structure, WHIRL
provides a general mapping, or annotation, mechanism. One can view this mechanism as a mapping table
(although the actual implementation may be quite different). Each node contains a word-sized map id that
effectively maps to a row in the table. By creating a new map, the user reserves a column in the table. The
user can then enter or query a value for any map for any WHIRL node in constant time.

1.5. STRUCTURED CONTROL FLOW STATEMENTS 11

As an example, imagine that a compiler pass wishes to store a parent pointer for every control flow node
in the tree. The pass would call

parent map = WN MAP Create(mempool).

At this point, parent map would contain the name of a new mapping. Memory to store information
about the mapping will be allocated from mempool. The pass would then visit every control flow node, nd,
in the tree, calling

WN MAP Set(parent map, wn, parent).

Now, the parent of any control flow node, nd, can be found by calling

parent = WN MAP Get(parent map, wn).

To avoid creating too many entries that are unused, the WHIRL nodes are divided into different categories
according to the operator. Assigned map IDs are unique only within each category. There is one category
for all the structured control flow statements, one for all the load and store nodes, one for ARRAY nodes,
one for all other statement nodes, and one for all other expression nodes. Map IDs are also unique only
within each PU, and the map tables are organized on a per-PU basis in the WHIRL file.

1.4.8 Source Position Information

The 64-bit field linenum for specifying source position information is allocated only for statement nodes.
The line number is stored in a 32-bit field. The remaining 32 bits contain the file and column number.

1.4.9 Additional Fields

There are other operator-specific fields such as symbol table indices and type table indices. These fields are
underlined and described in the operator specifications.

1.4.10 WHIRL Node Layout

A WHIRL node is represented by the struct WN. The minimum allocated size of struct WN is 24 bytes.,
which include pointers to two kids. If the node has more than two kids, the struct is extended at the end
for the additional kid pointers needed. If the node is a statement, four additional words are allocated before
the struct for linenum and the previous and next pointers. Table 1.2 gives the layout of struct WN.

In the upcoming operator specification in this document, any fields other than operator, prev/next,
linenum and kid count that an operator use will be underlined so that the reader can know at a glance what
additional fields in the node are used for each operator.

1.5 Structured Control Flow Statements

Structured control flow statements in WHIRL are hierarchical in nature. All the statements in a particular
control flow structure are descendents of the node representing that structure. All the control flow opcodes
have a ‘V’ in their result type and descriptor fields. Except FUNC ENTRY and BLOCK, structured control
flow opcodes are not allowed in M–VLWHIRL. All of these opcodes use the prev and next fields.

• FUNC ENTRY [VH–VL]

This operator represents a function entry. This operator will be at the top of every tree. st idx points
to the name of the procedure or function. Kids 0..n-4 are IDNAME leaves containing the names of the
formal parameters. Kid n-3 is a BLOCK node containing a list of PRAGMAs that are relevant to the
compilation of the PU. Kid n-2 is a BLOCK containing a list of PRAGMAs that are relevant to the
compilation at the call sites of the PU. For a nested PU, this pragma list must be present to identify
any non-local variables accessed in the PU to ensure correct compilation at the callsites. Kid n-1 is a
BLOCK node giving the body of the procedure.

12 CHAPTER 1. WHIRL ABSTRACT SYNTAX TREE

Offset Field Description Field size
byte -16 prev previous pointer word
byte -12 next next pointer word
byte -8 linenum source position information double word
byte 0 offset offset for loads, stores, LDA, IDNAME; no. of en-

tries, COMPGOTO and SWITCH; length in bits
for CVTL; label number; flags for calls, PARM
and REGION; break code for TRAP, ASSERT;

word

byte 0 trip est estimated trip count for LOOP INFO; half-word byte
byte 2 depth loop nesting depth for LOOP INFO; half-word
byte 4 st idx symbol table index; type index for all except LDA,

LDID, STID; last label for COMPGOTO and
SWITCH; number of exits for REGION; id for in-
trinsics flags field for PREFETCH, LOOP INFO;
region supplement: EXC SCOPE BEGIN;

word

byte 0 elem size element size for ARRAY double word
byte 8 operator WHIRL operator; byte
byte 9 bit 0 res result type 5 bits
byte 9 bit 5 kid count number of kids for n-ary operators; field ID for

operators with fixed no. of kids; bit offset at most
significant 7 bits and bit size at least significant
7 bits for LDBITS, STBITS, ILDBITS, ISTBITS,
EXTRACT BITS and COMPOSE BITS;

14 bits

byte 11 bit 3 desc descriptor type 5 bits
byte 12 map id index into map table word
byte 16 kids[0] kid 0; first pointer for BLOCK; flags for LABEL; word
byte 20 kids[1] kid 1; type index for LDA, LDID, STID; address

type pointer for ILOAD; last pointer for BLOCK;
word

byte 16 const val 64-bit integer constant; double word
byte 24+n kids[2+n] the (2 + n)th kid for n ≥ 0 word

Table 1.2: Layout of a WHIRL node

• BLOCK [VH–VL]

This operator represents a list of subtrees. It contains an arbitrary number of children connected
together via a doubly linked list, and pointed to by the first and last fields. The prev field of the first
child and the next field of the last child must be null. It is the only operator for which the numberof
children is not fixed at node creation time. The kid count field is undefined for this operator. A
BLOCK may not be the direct child of another BLOCK. An empty BLOCK is allowed, in which case
the head of the doubly linked list is null. In M–VL WHIRL, this operator can only appears under
FUNC ENTRY.

• REGION [H–VL]

This operator specifies a nested sub-region. The region flags field specifies the WHIRL level in the
region. It has three kids, all of which must be BLOCKs. The number-exits field gives the number of
exit points from the region. Kid 0 is a BLOCK that defines a jump table by its list of REGION EXITs.
The number of REGION EXITs must be equal to the number of exits. Kid 1 gives a list of PRAGMAs
that affect (and only affect)the compilation of the region. Kid 2 gives the content of the region. A
region serves as a unit of compilation. Regions can be nested one inside another. The outermost
region is the block corresponding to FUNC ENTRY. WHIRL level changes are allowed only at region
boundaries. When the current compilation unit contains REGION nodes, they are to be treated as

1.6. OTHER CONTROL FLOW STATEMENTS 13

black boxes while working on the current compilation unit. REGION nodes cannot contain references
and definitions of pseudo-registers that are live-in or live-out with respect to the node. Values can be
passed in and out of the black boxes via dedicated registers at the region boundaries. The WHIRL level
of a region must be lower than or equal to the level of its enclosing region. A compilation component
may choose to ignore a region boundary at which the WHIRL level does not change, in which case
it will optimize the code of the region together with the enclosing region. In general, nested regions
should be compiled inside-out. An additional use of this node is to specify a region to be parallelized. In
the course of compilation, a segment of code to be parallelized is first marked as a parallel region. The
lowering process will spawn off the region as a nested procedure that will be called via synchronization
routines during parallel execution.

• DO LOOP [VH–H]

This operator has the semantics of a Fortran Do loop. Kid 0 is an IDNAME representing the index
variable, which must be of type integer. Kid 1 must be an STID statement initializing the index variable,
which must not be null. Kid 2 is a comparison expression for the end condition. The comparison must
use GE, GT, LE or LT, and any content other than the induction variable in this expression must
be loop invariant. Kid 3 must be an STID statement that increments the index variable via an ADD
by a step amount. The step must be an expression that is loop invariant. Kid 4 is a BLOCK node
representing the body of the do loop. If Kid 5 is present, it must be a LOOP INFO that gives additional
information about the loop.

• DO WHILE [VH–H]

A do-while loop. Kid 0 is a boolean expression. Kid 1 is a BLOCK node representing the block of
statements that is executed while kid 0 returns nonzero. The condition is tested at the end of the loop,
so the block is executed at least once.

• WHILE DO [VH–H]

A while loop. Kid 0 is a boolean expression. Kid 1 is a BLOCK representing the block of statements
that is executed while Kid 0 returns non-zero. The condition is tested at the start of the loop.

• IF [VH–H]

This operator represents a structured logical if statement. Kid 0 is an expression, and both kids 1 and
2 must be BLOCKs. Kid 1 gives a block of statements that is executed if Kid 0 evaluates to some
non-zero value. Kid 2 gives another block of statements that is executed if Kid 0 evaluates to zero. If
this statement has no else part, the block for Kid 2 has an empty statement list. The flags field is used
to provide compilation-related information for this node.

DO LOOP, DO WHILE, WHILE DO and IF represent only well-formed high-level control constructs.
The blocks associated with them cannot be the target of jumps from outside. To make it easier for the
front-ends, we do tolerate illegal high-level control constructs in the front-ends’ output. Such illegal
high-level control constructs will be screened out and converted to use ordinary control flow constructs
by the first optimization phase.

1.6 Other Control Flow Statements

This section describes the remaining control flow statements in WHIRL, which are not hierarchical. They
are allowed at all levels of WHIRL. All of these operators use the prev and next fields.

• GOTO [VH–VL]

An unconditional branch to the label in the current procedure as given by label number.

• GOTO OUTER BLOCK [VH–VL]

An unconditional branch from a nested procedure to the label in a parent procedure as given by
label number. It involves unwinding of the procedure call stack.

14 CHAPTER 1. WHIRL ABSTRACT SYNTAX TREE

• SWITCH [VH]

A switch statement in a form close to the source code. An internal field, number entries, gives the
number of cases in the jump table. Another field, last label, gives the label that marks the end of the
code compiled from the switch statement in the source program. Kid 0 is the switch expression, which
must be of type integer. Kid 1 is a BLOCK that defines the jump table by a list of CASEGOTOs, the
number of which equals number entries. Kid 2 is a GOTO giving the default jump target. If there is
no default target (i.e. the front-end guarantees that a match case can be found), then Kid 2 does not
exist. This statement will be lowered to the control flow constructs that most efficiently implement
the switch.

• CASEGOTO [VH]

This is used only within a SWITCH to specify jump targets for individual case values. The const val
field gives the integer case value. The label number field gives the target of the jump if the switch
expression evaluates to the given case value.

• COMPGOTO [VH–M]

A non-structured computed goto statement. An internal field, number entries, gives the number of
entries in the jump table. Another field, last label, gives the label that marks the end of the code
compiled from the switch statement in the source program; a value of 0 means no information, and is
used in the case of a FORTRAN computed/assignedgoto, in which the jump targets are not contiguous.
Kid 0 is the switch value, and must evaluate to a 0-based integer index. Kid 1 is a BLOCK that defines
the jump table by its list of GOTO’s. The number of GOTO nodes must equal number entries. For
index value 0, the first GOTO is executed; for the next index value, the next GOTO is executed, etc.
Kid 2 is a GOTO giving the default jump target. If there is no default target (i.e. the front-end
guarantees that the switch value is in range), then Kid 2 does not exist.

• XGOTO [L–VL]

This is formed out of lowering a COMPGOTO. st idx gives the symbol table entry of the allocated
jump table. Kid 0 is an expression that evaluates to the address to be jumped to, starting with the
base address of the allocated jump table. Kid 1 is the same as Kid 1 in COMPGOTO. Number-entries
gives the number of entries in the jump table as in COMPGOTO.

There is no default jump target. The default jump target in the original COMPGOTO must be handled
by additional code generated during lowering.

• AGOTO [VH–VL]

An assigned or indirect unconditional branch. The flow of control is transferred to the address evaluated
by Kid 0.

• REGION EXIT [VH–VL]

This must exist within a REGION block, and specifies an exit out of the region. The label number
specifies the label outside the region that the flow of control will transfer to. Exit out of a region can
only be effected by executing this statement, and fall-through out of a region is not allowed. Other
jump statements in the region must have their targets located inside the region.

• ALTENTRY [VH–VL]

An alternate entry for the function, as translated from multiple entry subroutines in Fortran. st idx
names the entry point. Kid 0..n-1 are IDNAME leaves as in FUNC ENTRY. However, there is no
BLOCK, and control flows to the next statement. The code that appears before this operator must
always ends with a GOTO to jump around the alternate entry, because the prolog code generated from
lowering ALTENTRY is not to be executed unless control is entered via the alternate entry point.

• TRUEBR [VH–VL]

A non-structured conditional branch. This node contains a label number. Kid 0 is an expression that
must evaluate to an integral value. If it evaluates to non-zero, control is transferred to the previously
mentioned label. Otherwise, control flows to the next statement.

1.7. CALLS 15

• FALSEBR [VH–VL]

A non-structured conditional branch. This node contains a label number. Kid 0 is an expression that
must evaluate to an integral value. If it evaluates to zero, control is transferred to the previously
mentioned label. Otherwise, control flows to the next statement.

• RETURN [VH–VL]

Return from this procedure. There can be any number of return statements in a program unit. If a
value is being returned, RETURN VAL must be used instead. All return points must be explicitly
specified via RETURN or RETURN VAL even if it is the end of the function body.

• RETURN VAL res=any [VH–H]

Return from this function with the return value specified by Kid 0. This is lowered to RETURN with
associated store statements in M WHIRL.

• LABEL [VH–VL]

Define a label. This node contains a label number. Any branch to the label will transfer control to
the statement following this one. A flags field gives attributes about the label. In particular, one
bit specifies that the label marks the start of an exception handler, in which case the label has to be
treated as an entry point to the program unit. A LOOP INFO may be attached to this node as Kid
0. Otherwise, Kid 0 must be NULL.

• LOOP INFO [H–VL]

Not a statement node, but exists as a kid of DO LOOP in H WHIRL and LABEL otherwise. It
provides information about a loop and does not translate into any executable code. In the case of
being attached to a LABEL, it specifies the label as marking the start of the loop body, and the actual
extent of the loop can be determined by finding all the basic blocks dominated by the label up to a
branch back to that same label. The trip est field is a 16-bit field that gives the estimated trip count
of the loop; if it is larger than 16-bits, it should be represented as a large 16-bit number instead of
being truncated; if 0, the information is not provided. The depth field gives the loop nesting depth of
the content of the loop. The flags field provides various information about the loop, like innermost,
loop wind-down, etc. Kid 0 must be an LDID that gives the induction variable of the loop. If Kid 0
is NULL, the loop has no induction variable. Kid 1 is an expression that evaluates to the exact trip
count of the loop. If Kid 1 is NULL, the exact trip count cannot be specified or is unknown, as in the
case of a WHILE DO. If Kid 0 is NULL, Kid 1 must also be NULL. The trip count expression is for
information only, and does not need to be optimized, since it replicates the executable code elsewhere
that computes the trip count.

1.7 Calls

Because function calls can incur side effects, they are classified as statements rather than expression trees.
Programming languages allow arbitrary nesting of function calls inside expressions. In VH WHIRL, those
nestings are preserved by allowing call statements as nodes in an expression. The lowerer to H WHIRL has
to unnest calls from expression trees in order to obey H WHIRL semantics. This also includes flattening out
nested calls. Calls unnested from an expression need to be generated sequentially, and their return values
need to be stored in pseudo-registers(pregs). In VH and H WHIRL, return values from calls reside in the
special pseudo-register specified by preg -1. This conforms to C language convention, in which only a single
item can be returned, though it may be a composite item.

In lowering to M WHIRL, the actual return mechanism conforming to the target ISA and ABI is mani-
fested. The actual return mechanism may involve multiple registers specified by dedicated pregs. The actual
return mechanism may also create an implicit parameter that points to the memory block designated by the
caller for returning a struct. res in the callnode indicates the return type. Type V must be used for res if
there is no subsequent read of the return pregs. The code to read the return values in the pregs must be in
the statements immediately after the call. If there is one return value, it must be in the first statement after

16 CHAPTER 1. WHIRL ABSTRACT SYNTAX TREE

the call. If there are n return values, it must be in the first n statements immediately after the call. In VH
WHIRL, the statement that reads the return value can be a COMMA. Otherwise, the statement that reads
the return value must be a simple STID or ISTORE whose right-hand-side contains only the LDID node of
the return preg.

The WHIRL ASM STMT is provided to support inline assembler instructions embedded in C code.
Input operands to the asm are specified by ASM INPUT kids of the ASM STMT. Execution of ASM STMT
can resultin the assignment of values to multiple output operands. The effect is represented by separate
store statements that follow the ASM STMT. The right-hand-sides of these stores refer to respective output
operands via pregs with unique negative preg numbers. The correspondence of these pregs to the output
operands are specified in Kid 1 of the ASM STMT.

• CALL res=any [VH–VL]

A direct call statement. st idx gives the name of the procedure being called. Kids 0..n-1 are PARM
nodes that specify the actual parameters to the call. WHIRL follows the C pass-by-value seman-
tics. When res is not V, the return value is placed in one or more pregs; if more than one preg are
used, res gives the data type in each preg. WHIRL follows the C pass by-value semantics. A flags
field gives attributes about the call that are useful for optimization around the call. The attributes
are: non data mod (the called function modifies a data item that is not represented in the program),
non parm mod (the called function modifies a non-local data item whose address is not passed as
parameter), parm mod (the called function modifies a data item whose address is passed as parame-
ter), non data ref (the called function references a data item that is not represented in the program),
non parm ref (the called function references a non-local data item whose address is not passed as pa-
rameter), parm ref (the called function references a data item whose address is passed as parameter),
and never return (the called function will cause control to exit the current program unit).

• ICALL res=any [VH–VL]

An indirect call statement. Kid n-1 is the address of the procedure being called. Kids 0..n-2 are PARM
nodes that specify the actual parameters tothe call. WHIRL follows the C pass-by-value semantics.
When res is not V, the return value is placed in one or more pregs; if more than one pregare used, res
gives the data type in each preg. This operator contains a ty idx, which gives the type information
from the prototype definition of the function pointer. A flags field gives attributes about the call that
are useful for optimization around the call.

• VFCALL res=any [VH–H]

A virtual function call statement. Similar to ICALL, except that kid n-1 must be of the restricted
form as given by Figure 1.2.

• PICCALL res=any [L–VL]

A position-independent call statement, formed out of lowering a CALL under shared compilation. Kid
n-1 is the address of the procedure being called. Kids 0..n-2 are PARM nodes that specify the actual
parameters tothe call. When res is not V, the return value is placed in one or more pregs; if more than
one preg are used, res gives the data type in each preg. This operator contains the same st idx as in
the original CALL. A flags field gives attributes about the call that are useful for optimization around
the call.

• INTRINSIC CALL res=any [VH–M]

A call to the intrinsic specified by the intrinsic field. Kids 0..n-1 are PARM nodes that specify the
actual parameters to the call. When res is not V, the return value is placed in one or more negative
pregs; if more than one preg are used, res gives the data type in each preg. A flags field gives attributes
about the intrinsic that are useful for optimization around the intrinsic. Depending on the intrinsic
and compilation options, it will either become a call or a sequence of instructions after it is lowered to
L WHIRL.

• IO [VH–H]

1.8. OTHER STATEMENTS 17

PARM
..
..

PARM
LDID <field_id for vptr>
ILOAD <field_id>
..
..

ARRAY
ILOAD <field_id>
VFCALL

Figure 1.2: Form for VFCALL

A call to the FORTRAN I/O intrinsic specified by the intrinsic field. This operator directly corresponds
to an I/O statement in the FORTRAN source, and the trees underneath it also matches the I/O
statement syntax, so as to allow easy translation back to FORTRAN source code by whirl2f. Kids
0..n-1 are all IO ITEM nodes that specify the parameters in the I/O statement. Calls do not need to
be unnested underneath an IO. Due to the need to tolerate such special semantics, the optimizations
performed on the contents of this statement are limited and not as effective. There can be hidden
references and side effects to program variables in this statement; to maintain proper optimization
semantics, the hidden references and side effects must not be to any pseudo-registers, since their
addresses cannot be taken. A flags field gives attributes about the intrinsic. In M WHIRL, this
operator will be converted to a sequence of calls to the actual library routines.

• ASM STMT [VH–VL]

An inline assembler string. St idx gives a CLASS NAME symbol table entry whose name is the
assembly code string. Kid 0 is a BLOCK containing a list of PRAGMAs and/or XPRAGMAs of type
ASM CLOBBER that indicate registers clobbered by the given assembly code. Kid 1 is a BLOCK
containing a list of PRAGMAs of type ASM CONSTRAINT, each of which indicates an operand
constraint for an output operand and the negative preg number that will be used to refer to the output
value corresponding to it. The code to actually transfer the output values to the output operands are
generated as store statements that follow the ASM STMT. These stores do not have to immediately
follow the ASM STMT. Because they may be arbitrarily separated from it, each negative preg used in
an ASM STMT must be unique (i.e. used only once) within the program unit. From Kid 2 onwards
are ASM INPUT nodes, each giving an input operand expression and the corresponding constraint
string. A flags field gives attributes about the ASM STMT.

1.8 Other Statements

This section describes the WHIRL statements that are neither control flow nor stores. Store statements are
described in the Memory Access Section. All statement operators use the prev and next fields.

• EVAL [VH–VL]

The expression in Kid 0 is evaluated. This is used to force evaluation of an expression that does not
produce a side effect. It is necessary for things like volatiles. If the expression does not have side effect,
this statement can be optimized away.

• PRAGMA [VH–VL]

This operator provides compilation directives for the current point of the program. The offset field gives
the name of the pragma. st idx, if not 0, gives the symbol associated with the directive. Additional
values associated with the pragma are stored in the const val field. The mapping mechanism can be
used to store even more information for the pragma.

18 CHAPTER 1. WHIRL ABSTRACT SYNTAX TREE

• XPRAGMA [VH–VL]

This operator provides compilation directives like PRAGMA, but the directives are specified with
respect to a WHIRL expression tree given by Kid 0 of this statement node. The number of kids must
be 1. The offset field gives the name of the pragma. st idx, if not 0, gives the symbol associated with
the directive.

• USE [VH–VL]

This operator represents a Fortran USE statement. st idx gives the module name. If the USE statement
has an ONLY predicate the rType is set to MTYPE B, otherwise it is MTYPE V. If they are kids,
they come in pairs. A pair signifies a potential rename. If a pair contains two identical nodes there
is no actual rename, just a reference to a particular module symbol in conjunction with the ONLY
predicate.

• PREFETCH [H–VL]

This statement is generated by the front-end from a manual prefetch pragma, or automatically by LNO.
Kid 0 computes an address which is added to the offset field. The optimizer needs not do anything
to this operation other than optimizing the address computation. The flags field contains hints, which
CG will incorporate into the prefetch instruction in the target machine code. The manual prefetch bit
of the flags field identifies prefetches generated by the front-end that have not yet been processed by
LNO, and thus can be ignored or deleted by the back-end phases when LNO is not run.

• PREFETCHX [M–VL]

This operator is converted from PREFETCH by WOPT. It contains two kids, both of which must be
LDIDs corresponding to two pseudo-registers. The sum of the two kids give the computed address.
The flags field contains hints, which CG will incorporate into the prefetch instruction in the target
machine code.

• COMMENT [VH–VL]

This operator does not translate into any executable code. It gives an ASCII string for commenting
purpose only. The st idx field gives a CLASS NAME symbol table entry whose name is the content of
the comment.

• TRAP [VH–VL]

When executed, this statement causes a breakpoint trap to occur. This operator is translated to either
a instruction that causes a break, or a call to a runtime routine that eventually traps. The offset field
contains the break code that specifies how the trap will be effected. Execution will not continue into
the next statement. It can have a variable number of kids depending on the break code.

• ASSERT [VH–VL]

This statement WHIRL node asserts the condition specified by Kid 0. If the result is true, nothing
will happen. Otherwise, the effect is the same as executing the corresponding TRAP. The offset field
contains the break code as in TRAP. This operator can be used to implement bounds-checking or
assertions. It can have a variable number of kids depending on the break code. The compiler can
delete this statement or generate TRAP if it can prove that the condition evaluates to true or false
respectively.

• AFFIRM [VH–VL]

This statement WHIRL node does not cause any executable code to be generated. It affirms that the
condition specified by Kid 0 is always true, and that the compiler can take advantage of the information
in performing optimizations.

• FORWARD BARRIER [VH–VL]

This operator designates a barrier to the code movement of memory access instructions in the forward
direction (along the flow of control), used for MP support. If there is zero kid, all memory objects

1.9. MEMORY ACCESSES 19

are affected. Otherwise, a named barrier is specified, and only the memory accesses represented by
dereferences of the L-value expressions given by the kids are affected by the barrier. Examples of
L-value expressions are LDAs, ILDAs, LDIDs of pointers, and any address expressions.

Barriers never have any effect on variables that are not modifiable or visible in the source program.
This includes: pregs, constants, read-only variables, the base address of formal parameters that are
passed by reference, the index variable of any DO LOOP that encloses the barrier. Barriers also have
no effect on objects declared volatile. It is an error to specify the L-value of these objects as kids in
named barriers. Barrier semantics also implies liveness: the store to an object should not be regarded
as dead if it reaches a barrier that affects it. The reason is because another thread of the PU executing
at the same time may reference the object. In the case of unnamed barriers, to prevent the loss of
too many optimization opportunities, private variables are excluded from being affected by the barrier.
Variables are declared to be private (local) or shared via MP pragmas. An auto variable is never shared
unless its symbol table entry is marked with the ST IS SHARED AUTO flag.

• BACKWARD BARRIER [VH–VL]

This operator designates a barrier to the code movement of memory access instructions in the backward
direction (against the flow of control), used for MP support. The memory accesses affected by the
barrier a respecified in the same way as FORWARD BARRIER. See FORWARD BARRIER regarding
rules for determining the affected objects.

• DEALLOCA [VH–VL]

This operator restores the stack pointer ($sp) back to the value represented by Kid 0. Kid 0 must be a
pointer that gets its value via an earlier ALLOCA with size 0. Kids 1 and up are dummy operands that
give pointers or address expressions to the allocated objects that are the left-hand-sides of the affected
ALLOCAs, whose dereferences are no longer valid because their pointed-to memory areas have been
deallocated by this operator. Kids 1 and up are to be regarded as L-value occurrences (i.e. stores)
ofthe pointed-to locations by the compiler components, so that movements of their dereferences can be
automatically blocked by this statement. A compiler-generated ALLOCA must lead to a DEALLOCA
in which the pointer to the allocated block is specified as one of the dummy operands.

For user-specified ALLOCAs, since the affected dereferences cannot be easily collected, a DEALLOCA
with no dummy operand (i.e. only Kid 0)can be specified, which will block the movement of all
dereferences. For user-specified ALLOCAs, DEALLOCA is generated only by the inliner:when the
inliner inlines a procedure that contains a user-specified ALLOCA, it must insert an ALLOCA with 0
argument at the start of the inlined body, and a corresponding DEALLOCA with no dummy operand
at each each exit from the inlined body, to preserve the original stack allocation and deallocation
behavior of the program, and prevent the movement of dereferences beyond the deallocation points.

1.9 Memory Accesses

In WHIRL, program variables and static data are regarded as being organized in blocks of memory. The
blocks of memory can be allocated statically, or automatically on procedure entry in the procedure’s stack
frame. One important job of the compiler is to lay out the variables and data in memory so that the
operations that access them can be performed by an efficient sequence of instructions.

Memory accesses in WHIRL are represented by load and store operations. These operations are either
direct or indirect. The operators for direct load and store are LDID and STID respectively. They are used
whenever the address of the accessed data is fixed.

Directly accessed locations are specified in WHIRL by the triple: st idx, offset and size. Each symbol
table entry has a field that specifies the block. Each separately declared object is assigned a unique block.
The symbol table entry of the object has another offset field, which gives the offset of the object within the
block. The real offset of an accessed location within the block is given by the sum of the offset in the WHIRL
node and the offset in the symbol table entry. The size is implied by the descriptor type.

The purpose off the offset field in the symbol table entry is to enable memory layout to be performed
by just updating the symbol table entries. As compilation progresses, the Open64 back-end components

20 CHAPTER 1. WHIRL ABSTRACT SYNTAX TREE

perform layout of the program variables by coalescing them from a large number of smaller blocks into a
small number of large blocks. As each variable is laid out in a block, its offset field in the symbol table entry
is adjusted to reflect the new offset within the larger block. All compile-time data layout has to be completed
before lowering to L WHIRL. In L WHIRL, the symbol table entry referenced in the WHIRL node must
have 0 offset, so that the full offset within the block is given in the offset field in the WHIRL node.

LDID and STID, enable the compiler to do a better job in optimizing the memory accesses, due to the
fact that the locations are known to the compiler, and the compiler knows that it is dealing with a specific
data object. Having exact location information allows the compiler to more efficient check for the presence
of aliasing. Given two direct accesses, the compiler can verify that there is no alias among them by just
checking that there is no overlap between the accessed locations. If the address of the location is never
taken, the compiler can assume that any other indirect accesses will not affect the location. Having accurate
alias information allows the optimizer more freedom in moving expressions that contain memory references
around.

Indirect memory accesses are represented by ILOAD and ISTORE respectively. These operators refer-
ence an expression that computes the address of the location being accessed. It takes substantially more
compilation time to do an accurate job of determining the possible locations that an ILOAD or ISTORE
accesses. The work involves carrying around ranges of values and tracing the contents of pointers. After all
the possible locations have been determined, it still has to find all the data objects that alias with these loca-
tions. When compilation speed is important, such expensive analyses have to be omitted, and the compiler
has to assume the worst cases regarding aliases for the indirect loads and stores. As a result, direct memory
accesses using LDID and STID are always preeferred over indirect memory accesses, and the optimizer will
try to promote an ILOAD or ISTORE to LDID or STID whenever it can determine that the computed
address is a constant.

In WHIRL, stores are statements and loads are expressions. LDID is a leaf, ecause it does not use the
result of any other computation. For all of the load operators, desc specifies the data type in memory, while
res specifies the data type in the hardware register. In VH WHIRL, the data types can be any type, but in
M WHIRL and lower, type M is not allowed. For other than integer types, res and desc must be the same
type. For integer types, res and desc must be the same type differing only by size. For the store operators,
desc specifies the data type in memory, while res must be type V. For fields within a struct or union, the
additional annotation of field id is provided. All the nested fields in a struct are flattened and a unique
integer number is assigned to each field. This allows more accurate information to be represented in the case
of overlapping fields. If a struct is itself a field within another struct, the struct itself is also given a field id.
The field id of 0 is given to the top-level un-nested struct. All nested structs and fields inside it are assigned
integer numbers starting from 1. the ty index field in the WHIRL node must give the type of the outermost
struct within which field id’s are assigned whenever field id is not 0.

Since field id uniquely identifies a field, the exact layout of the field within the struct can be delayed.
Prior to this layout, the offset field in the WHIRL node is the offset for the top-level un-nested struct. In the
current implementation, only the layout of bit-fields are delayed. For non-bitfields, the field id only provides
supplemental information, and is not required for code generation purpose.

Since the field id field is only 14 bits long, it is not large enough in the case of structs that have more
than 16383 fields. As a result, we reserve the value 16383 to mean unknown or unrepresentable field, which
also occurs when optimization generates an access that does not correspond to any particular field. If field id
cannot be used, then bit-field accesses cannot be represented in this form, and the lowered bit-field operators
of LDBITS, STBITS, ILDBITS and ISTBITS must be used.

• LDID res=B,i,f,z,M desc=all [VH–VL]

This operator contains st idx, field id and offset. This specifies a direct load from the address in bytes
given by the offset field, located within the block given by the symbol table entry. This node also
contains a ty idx that gives the high level type of the object, which includes the volatile attribute.
Type M is allowed only in VH and H WHIRL. Type B for desc is allowed only if the object is a
register, and res can be type B only if desc is also type B.

• STID desc=all [VH–VL]

This operator contains st idx, field id and offset. This specifies a direct store of the value computed

1.10. BIT-FIELD REPRESENTATION 21

by Kid 0 to the address in bytes given by the offset field, located within the block given by the symbol
table entry. This node also contains a ty idx that gives the high level type of the object, which includes
the volatile attribute. Type M is allowed only in VH and H WHIRL. Type B for desc is allowed only
if the object is a register.

• ILOAD res=i,f,z,M desc=all [VH–VL]

A load or dereference is performed from the address in bytes given by adding the offset field to the
address computed by Kid 0. This node contains two ty idx’s, one giving the high level type of the
pointer through which the indirection is performed (use WN load addr ty), and the other giving the
high level type of the item being loaded (i.e., the referenced object; use WN ty). If the loaded object
is a field in a struct, field id identifies the exact field. Type M is allowed only in VH and H WHIRL.

• ILOADX res=f desc=f [M–VL]

This operator is only generated by later phases of the compiler. This operator contains two kids. Both
kids must be LDIDs corresponding to two pseudo-registers. This operator loads from the address given
by the sum of the two pseudo-registers. Two ty idx’s are provided as in ILOAD.

• MLOAD [M–L]

A multiple-byte load is performed from the address in bytes given by adding the offset field to the
address computed by kid 0. Kid 1 gives the number of bytes to load. This node contains a ty idx that
gives the high-level type of the pointer through which indirection is performed. If the loaded object is
a field in a struct, field id identifies the exact field.

• ISTORE desc=all [VH–VL]

A store of the value computed by Kid 0 is performed to the address in bytes given by adding the offset
field to the address computed by Kid 1. This node also contains one ty idx that gives the high level
type of the pointer through which indirection is performed. If the stored-to object is a field in a struct,
field id identifies the exact field. Type M is allowed only in VH and H WHIRL

• ISTOREX desc=f [M–VL]

This operator is only generated by later phases of the compiler. This operator contains three kids.
Kids 1 and 2 must be LDIDs corresponding to two pseudo-registers. This operator stores the value
computed by Kid 0 to the address given by the sum of the two pseudo registers. ty idx is provided as
in ISTORE.

• MSTORE [M–L]

A multiple-byte store of the value computed by Kid 0 is performed to the address given by adding the
offset field to the address computed by Kid 1. Kid 2 gives the number of bytes to store. This node also
contain sty idx that gives the high level type of the pointer through which indirection is performed. If
the stored-to object is a field in a struct, field id identifies the exact field. Kid 0 is either an MLOAD or
a scalar expression. If Kid 0 is an MLOAD, it must be of the same size, and there must be no overlap
between the source and target memory. If Kid 0 is a scalar expression, the size of the MSTORE must
be a multiple of the size of the type of the scalar expression, and the alignment of the start address of
the MSTORE must also match the alignment of the type of the scalar expression.

1.10 Bit-field Representation

Since bit-fields are always fields in a struct, they can be represented by field id in the load and store WHIRL
operations. The data type BS is used in desc to indicate bit-field loads and stores, in which case the offset
field gives the offset of the top-level un-nested struct. Bit-field loads and stores have to be lowered in getting
to M WHIRL. The lowered forms of bit-field loads and stores are also used whenever field id cannot be used,
which could be due to bit-field optimizations or because the field number exceeds the size of the field id
field. In LDBITS, STBITS, ILDBITS and ISTBITS, field id is replaced by a pair of numbers, bit offset and

22 CHAPTER 1. WHIRL ABSTRACT SYNTAX TREE

bit size, that give the offset and length respectively of the bit-field being accessed. In these operators, desc
gives the unit of memory being accessed in order to extract or deposit the bit-field.

EXTRACT BITS and COMPOSE BITS are even lower-level operations related to bit-fields. They should
be generated only if the target instruction set provides similar instructions.

• LDBITS res=i desc=i,I1,I2 [VH–VL]

This operator corresponds to an LDID with field id 0. desc gives the unit of memory being loaded
before the bit-field extraction. The bit-field extraction is specified by the fields bit offset and bit size.

• STBITS desc=i,I1,I2 [VH–VL]

This operator corresponds to an STID with field id 0. desc gives the unit of memory being accessed to
perform the bit-field deposition. The bitfield deposition is specified by the fields bit offset and bit size.

• ILDBITS res=i desc=i,I1,I2 [VH–VL]

This operator corresponds to an ILOAD with field id 0. desc gives the unitof memory being loaded
before the bit-field extraction. The bit-field extraction is specified by the fields bit offset and bit size.

• ISTBITS desc=i,I1,I2 [VH–VL]

This operator corresponds to an ISTORE with field id 0. desc gives the unit of memory being accessed
to perform the bit-field deposition. The bit-field deposition is specified by the fields bit offset and
bit size.

1.11 Pseudo-registers

One important task of the compilation process is to identify candidates for allocation to registers.
WHIRL programs can use an unlimited number of pseudo-registers. An important property of pseudo-
registers is that they are never aliased to anything. This simplifies the job of the global register
allocator (GRA) in CG, which will map all the pseudo-registers to the set of physical registers in the
target machine. In this process, it may have to spill some of them back into memory, or re-materialize
them to avoid the memory store operations. Pseudo-registers (pregs) do not need to have symbol table
entries, because they do not correspond to user variables, and do not need to be laid out in memory
unless spilled. But because they resembles memory objects, we refer to them using LDIDs and STIDs.
However, their addresses cannot be taken using LDA.

The symbol table entry given by the LDID or STID will identify the object as being a preg. The offset
field in the WHIRL node gives the number of the preg being accessed. The preg number is unique
within the entire PU, and their numbering starts from 1. Preg 0 is reserved and disallowed for use. All
pregs of the same data type will point to the same symbol tableentry. Pregs of all the WHIRL data
types except V and M are allowed. For integer types, pregs must be either 32-bit or 64-bit, since the C
language specifies that intermediate values of computation can only be of these two sizes; starting in
M WHIRL, if desc gives a size smaller than the physical size of the register in the compilation target,
it indicates that that the high-order bits of the register are not live. Since pregs have to correspond
to the hardware registers, starting in LWHIRL, only the data types that have exact correspondence to
the hardware registers are allowed in pregs. Pregs for the complex data types are lowered to pairs of
float pre

LDIDs and STIDs of pseudo-registers do not cause implicit type conversions to be generated. The
same floating-point pseudo-register is not allowed to be F4 and F8 at different places in the same
program unit. For integer data types, the same pseudo-registers may be referenced as I4, I8, U4 or
U8 at different places because the compiler recognizes that some integer type conversions are no-op.
Type conversions for pseudo-registers that are not no-op must be represented explicitly by conversion
operators in WHIRL so that they can be optimized by the WHIRL optimizer.

Whenever the compiler needs to save the intermediate results of computations, it should generate and
use new pregs whenever possible, as opposed to temporaries that reside in memory, because this avoids

1.12. OTHER LEAF OPERATORS 23

the overhead of creating and maintaining symbol table entries, and they do not have to be allocated in
memory unless spilled. Subsequent compiler phases also have less overhead dealing with pregs because
they are never aliased. In contrast, temporaries are regarded as memory objects, and symbol table
entries have to be created for them.

As compilation proceeds in the back-end, pregs are generated to store intermediate results. In the
register variable identification (RVI) phase, the compiler attempts to convert as many memory accesses
to preg accesses as possible, while leaving behind the minimum number of memory loads and stores.
This phase also attempts to allocate constants to registers. As a result, a data value can reside in pregs
and memory at different places in the program.

We call pregs that have home memory locations has-home pregs. A home can be associated with only
one preg, and a has-home preg can be associated with only one home. The live range of a preg is the
set of WHIRL statements over which it is both defined and live. Over the live range of a has-home
preg, its home location cannot be assumed to contain up-to-date values. The only exception is in the
case where a has-home preg has only uses over a contiguous part of its live range, in which case the
home location can be regarded as having valid content over that region.

Depending on the target machine, different classes and numbers of physical (or dedicated) registers
can show up starting in M WHIRL. They are identified by different symbol table entries. Their usages
are associated with the passing of function parameters and return values or compilation regions. In
L WHIRL, additional dedicated pregs will be manifested that reference the global pointer, the frame
pointer and the return address register. Dedicated pregs are not subject to the fixed-size restriction
as for ordinary pregs. Each floating-point preg can be both F4 and F8 at different times, if the target
ISA allows. Dedicated pregs are not re-mapped in later code generation phases.

The special preg -1 is used in VH and H WHIRL for specifying the return value of a function call.
Preg -1 can be used only once after each call that sets its value. In VH and H WHIRL, preg -1 suffices
because a function can return only one item, even though it may be a composite item. After lowering
to M WHIRL, depending on the linkage convention, more than one item can be returned in multiple
dedicated registers. See Section 1.11 regarding restrictions on where negative pregs can appear.

1.12 Other Leaf Operators

Apart from LDID, these are the other operators that constitute leaves in WHIRL trees:

• LDA res= A4,A8 [VH–VL]

Return the address in bytes given by adding the offset field to the address of the symbol given by
st idx. The symbol can be either a variable or a function. This node also contains ty idx that gives
the high level type of the address being loaded.

• LDMA res= A4,A8 [VH–VL]

Same as LDA, but the address cannot be regarded as constant because it is mutable, in the sense that
the address of the variable or function may be changed by a procedure call. There are two situations
in which the address of a symbol can be changed by a procedure call. In the first situation, the call
causes a new dynamic object to be linked in, and the definition of the symbol is preempted by it.
(Dynamic objects can be linked in at run-time via the dlopen(2) or sgidladd(2) system calls). The
second situation applies only to functions, and is due to lazy-text resolution performed by the run-time
linker, or quickstart. For the second situation, the address of the function is changed only when it is
called the first time. A symbol is mutable only if its export class is EXPORT PREEMPTIBLE. In
the case of variables, it must additionally be either a weak symbol or is of the SCLASS COMMON or
SCLASS EXTERN storage class.

• LDA LABEL res= A4,A8 [VH–VL]

Return the text address of the label number given. This node also contains ty idx that gives the high
level type of the address being loaded, which should be a pointer to void.

24 CHAPTER 1. WHIRL ABSTRACT SYNTAX TREE

• IDNAME [VH–VL]

Refer to the name of a symbol given by st idx and offset. This is used for the formal parameters in
FUNC ENTRY and ALTENTRY, and for the induction variable in DO LOOP. This operator is not
executable, and is for specification purpose only.

• INTCONST res=B,i [VH–VL]

Return an integer value. The integer value is contained in the 64 bit fieldconst val. When representing
a 32-bit integer, the high-order 32 bits are ignored.

• CONST res=i,f,z [VH–VL]

Return a literal value. st idx points to the entry that gives the literal value. For the integer types, this
operator is used to specify symbolic constants.

1.13 Type Conversions

In this section, we talk about the type conversion operators CVT and CVTL, and the treat-as operator TAS.
These operators have data types that are different between their operands and results. CVT and CVTL
maintain the same value, while changing the representation from one type to another. TAS preserves the
bit representation and interpret the value as if it is of a different type.

To effectively serve as the medium to perform optimizations for the underlying target machine, it is most
ideal for one operation in WHIRL to map to exactly one machine instruction. If there are more operations
in WHIRL than after they have been translated to machine instructions, any common subexpression that
the optimizer recognizes at the WHIRL level could be wrongly disguised, causing unnecessary saving of
the disguised common subexpression and the unnecessary occupation of a register. VH and H WHIRL are
target-independent. Starting in M WHIRL, we discourage the generation of any WHIRL operation that
translates to a no-op in the target machine.

CVT is used for conversions among the data types i and f. To support integer values represented by
smaller number of bits, CVTL is used. The integer value must still be manipulated in register as one of the
base types I4, I8, U4 or U8. In between operations, CVTL is used to effect truncation and sign extension
within the base type.

The purposes of CVT and CVTL are to preserve the value while changing representation. For some
conversions, the value being converted may be unrepresentable in the new representation because it lies
outside the domain of the result type. The compiler always generates code that does the correct conversion
for in-range values, and the correct truncation for out-of-range values. A special case occurs when a negative
signed integer is converted to unsigned; in this case, the result is really undefined. However, consistent results
can be produced by generating different code according to how the size changes: if the size is unchanged or
increased, no code is generated, which means that the value is sign-extended; if the size decreases, the signed
value is truncated.

TAS is always a no-op except when casting between floating-point and integer types. TAS takes a ty idx
that gives the high level type description of the casted result. In cases where the high level type information
given is crucial for optimization purposes, the TAS should be generated even if it translates to a no-op. Any
transformation done to the code around the TAS must not destroy the type information given by it. As a
result, TAS is a barrier to tree restructuring transformation, similar to the PAREN operator.

• CVT res=i,f desc=B,i,f [VH–VL]

The value in Kid 0 is converted from type desc into type res. For conversions from f to i, CVT
can map to one of RND, TRUNC, FLOOR and CEIL depending on the rounding mode set in the
target processor. In both Fortran and C, conversion from floating point to integer is defined to use
the truncation semantics, so the front-ends should explicitly use TRUNC for such type conversions.
Conversion from B to i corresponds to transferring the boolean value from a predicate register to an
integer register.

• CVTL res=i [VH–VL]

1.14. HIGH LEVEL TYPE SPECIFICATION 25

The value computed by Kid 0 is to be treated as being of the given size in number of bits represented
by the basic type res. The type of Kid 0 must be of the same size as res. For res=U8 or U4, the rest of
the bits are made to be zero. For res = I8 or I4, the rest of the bits are sign-filled. The size specified
in the node must be smaller than the size of res in bits.

• TAS res=i,f [VH–VL] Treats (or casts) the value computed by Kid 0 as being of type res. The bit
representation of the value is unchanged. The type of Kid 0 must be of the same size as res. A ty idx
is used to give the high level type description of the result type.

1.14 High Level Type Specification

High level types are the composite types that users specify in their programs. They provide additional type
information beyond that provided by the data type fields in the WHIRL node. Since high level types have
built-in structure and hierarchy, they can only be represented in the symbol table via the TY entries. There
are ty idx fields in the symbol table entries that give the declared type of each variable. But in modern
programming languages, type information is not just limited to the places in the program where things
are declared. Languages like C allow type casts in executable statements that can alter the semantics of
the computation. As a result, ty idx’s are provided in a few WHIRL operators to carry the type casting
information from the original program. High level type information in WHIRL serves the following purposes:

1. It provides the complete information to allow correct code generation:Information like alignment and
the volatile attribute is carried in the high level type information in WHIRL.

2. It enables better optimizations: Under some options, (for example, ”-TENV:alias=typed”), the com-
piler can assume that accesses to objects through pointers to different types are not aliased to each
other. This allows the compiler to more aggressively move memory references around to achieve better
performance.

3. It supports translation of WHIRL back to the source language: The tools whirl2c and whirl2f can more
accurately reconstruct the original program using the high-level type information.

Whenever the data type fields in the WHIRL node provide sufficient information for a given translation
or optimization, use of the data type fields should be preferred over high-level types.

Since explicit type casts do not arise frequently, setting up a ty idx field for all operators would unneces-
sarily expand the WHIRL node. We have chosen to provide ty idx only for a few operators: LDID, STID,
LDA, ILDA, ILOAD, MLOAD, ISTORE, and MSTORE. To represent type cases that are not associated
with these operations, we use TAS to specify the high level type. We now describe the ty idx’s in these
operators:

LDA, ILDA – ty idx gives the high level type of the address being loaded. If the address is subsequently
dereferenced, it is assumed that the pointed-to object is dereferenced, and that the operation can only
affect the block of memory locations whose size is the size of the type pointed to by the pointer type
specified by the ty idx.

LDID and STID – ty idx gives the type of the object being loaded or stored into.

ILOAD – There are two ty idx’s, one for the pointer as computed by the address expression and the other
for the result of the load. The result type cannot be derived from the address type only in the case of
explicit type casting for the result of the load.

MLOAD – There is only one ty idx that gives the type of the pointer computed by the address expression.
The type for the object being loaded is not specified, as it can be inferred from the type of the address,
and type casts to structs are not allowed in the languages supported. ISTORE and MSTORE – Only
the ty idx for the pointer computed by the address expression is provided. The type of the value being
stored can be determined by looking at the expression that computes the value.

26 CHAPTER 1. WHIRL ABSTRACT SYNTAX TREE

Input code:

\index{LDID}%
U4U4LDID p
U4TAS t1
.
.

\index{LDID}%
U4U4LDID p
U4TAS t1
.
.

\index{LDID}%
U4U4LDID p
.
.

Optimized code:

U4U4LDID p
\index{STID}%
U4U4STID preg1
U4U4LDID preg1

U4TAS t1
U4U4STID preg2
U4U4LDID preg2
.
.

U4U4LDID preg2
.
.

U4U4LDID preg1

Figure 1.3: Effects of CSEs on TAS’s

TAS – This operator arises only from implicit or explicit type casts in the original program. The ty idx
gives the casted-to type. If the ty idx can be carried with one of the above operators, this operator
should not be generated.

In recognizing common subexpressions, the WHIRL optimizer (WOPT) handles the ty idx in TAS dif-
ferently from the other operators. Ordinarily, the optimizer disregards ty idx’s in recognizing common
subexpressions.

This is possible because the values computed by the two instances are the same, even if their ty idx’s
are different. For example, if two loads are common subexpressions, they must be loading the same value
from the same address. The process of recognizing common subexpressions will result in the optimizer using
only one node to represent the two instances; the optimizer just randomly picks one of the ty idx’s to use in
the single node. We do not think this will cause any error in the generated code, even if the compilation is
”-TENV:alias=typed”. On the other hand, this allows more common subexpressions to be recognized. For
TAS’s, WOPT includes the ty idx in recognizing common subexpression. This means that two TAS’s with
different ty idx’s will not be recognized as common subexpressions. This guarantees that optimization will
never delete any high level type information provided in TAS’s. The reason that we provide the address
ty idx in ILOAD and ISTORE is because the address expression referenced by them may not provide a result
type ty idx. For example, if the root of the address expression is an ADD, there is no ty idx that gives the
high level type of the result of the address expression. Such high level type information is needed in code
generation and optimization for ILOAD and ISTORE. The use of TAS that does not map to any machine
instruction can cause non-optimal code sequences to be generated. This is illustrated in Figure 1.3. The
occurrences of TAS’s cause the optimizer to use two registers instead of one in order to handle the common
subexpression in TAS’s.

The example in Figure 1.3 shows that TAS’s should not be generated whenever possible. With our
specification, a TAS would not have been generated if it is underneath a ILOAD, or associated with an
LDID or LDA. So the situation where it has to appear should be very rare. Figure 1.4 gives an example of
a situation where TAS has to be generated.

1.15 Expression Operators

In this section, we specify the WHIRL operators that are internal nodes in expression trees. We classify
them according to the number of operands involved in the operation. All floating-point arithmetic operations,
where applicable, are all intended to have the standard IEEE 754 semantics, including traps according to
the current machine state.

1.15. EXPRESSION OPERATORS 27

C expression: *(((t1 *) (p+5)) + 4)

WHIRL expression:

U4U4LDID p
I4INTCONST 20

U4ADD
U4TAS t1
I4INTCONST 16

U4ADD
I4I4LOAD 0

Figure 1.4: Example of appearance of TAS

1.15.1 Unary Operations

• NEG res=i,f,z [VH–VL]

Return the arithmetic negation of Kid 0.

• ABS res=i,f [VH–VL]

Return the absolute value of Kid 0.

• SQRT res=f [VH–VL]

Return the sqrt of Kid 0.

• RSQRT res=f [VH–VL]

Return the reciprocal sqrt of Kid 0.

• RECIP res=f [VH–VL]

Return the reciprocal of Kid 0.

• FIRSTPART res=f desc=FQ,z [VH–M]

For res=z, it returns the real part of the complex number given by Kid 0. For res=FQ, it returns the
high part of the FQ value given by Kid 0. res=z is supported only in VH and H WHIRL. res=FQ is
supported only in MWHIRL.

• SECONDPART res=f desc=FQ,z [VH–M]

For res=z, it returns the imaginary part of the complex number given by Kid 0. For res=FQ, it returns
the low part of the FQ value given by Kid 0. res=z is supported only in VH and H WHIRL. res=FQ
is supported only in M WHIRL.

• PAREN res=i,f,z [VH–VL]

Place a parenthesis around the expression in Kid 0. This is used to force the order of evaluation on an
expression.

• RND res=i desc=f [VH–VL]

Return Kid 0 rounded to the nearest integer.

• TRUNC res=i desc=f [VH–VL]

Return Kid 0 rounded towards zero.

• CEIL res=i desc=f [VH–VL]

Return Kid 0 rounded towards +inf.

28 CHAPTER 1. WHIRL ABSTRACT SYNTAX TREE

• FLOOR res=i desc=f [VH–VL]

Return Kid 0 rounded towards -inf .

• BNOT res=i [VH–VL]

Return the bitwise not of Kid 0.

• LNOT res=B,i desc=B,i [VH–VL]

Return the logical not of Kid 0. The operand and result must both be of type boolean.

• LOWPART res=i [M–VL]

Operate on an LDID of a preg that contains the result of an XMPY or DIVREM and return the part
that represents the low-order part of the multiply or quotient of the divide respectively.

• HIGHPART res=i [M–VL]

Operate on an LDID of a preg that contains the result of an XMPY or DIVREM and return the part
that represents the high-order part of the multiply or remainder of the divide respectively.

• MINPART res=i [M–VL]

Operate on an LDID of a preg that contains the result of an MINMAX and return the part that
represents the minimum.

• MAXPART res=i [M–VL]

Operate on an LDID of a preg that contains the result of a MINMAX and return the part that
represents the maximum.

• ILDA res= A4,A8 [VH]

Return the address in bytes given by adding the offset field to Kid 0. The symbol can be either a
variable or a function. This node also contains ty idx that gives the high level type of the pointer
corresponding to Kid 0. If the address being loaded corresponds to a field in a struct, field id identifies
the exact field. This operator can be viewed as computing the l-value of an ILOAD that has the same
contents and kid.

• STRCTFLD res=A4,A8 desc=A4,A8 [VH]

This operator represents a source-level selection operator, except that instead of taking a value (a whole
structure) and returning a value (a field in the structure), it takes the address of the structure given by
Kid 0 and returns the address of the field reference identified by field id . (Note that the field id refers
to the unflattend structure layout; see below.) Thus, the operator really is semantic sugar for some
pointer arithimetic; it performs no loads (ILOADS or LDAs). The operator contains two ty idx’s, one
giving the type of the structure (WN load addr ty) and the other the type of the field (WN ty).

Originally, even in VH WHIRL, the representation of structure field accesses (i.e., x.y in C or x%y in
Fortran) was acutely inconvenient for source-to-source compiling (e.g., transformations and unparsing).
First, field references were usually represented using either the offset or field id entries of one of the
WHIRL load or store operators – but not always. For example, to access a field in an array element,
actual OPR ADD nodes appeared in the AST because OPR ARRAY has no offset field. Second, even
when structure references were represented in WHIRL load operators, they were difficult to understand
from a source-level perspective. Consider an access to the first field in a structure. If the front-end did
not set the field id (a la the Fortran front end), then the offset of the first field would be 0 and the
only way to detect the presence of the field-selection operator was by comparing the type of the loaded
object and the type of base pointer. Consider a second example where the source code references a
field in a nested structure, that is, a structure within a structure. Because the typical semantics of a
WHIRL load assumed flattened structures, the unparsers had to do a lot of work to reconstruct the
multiple field-selection operators that actually appeared at the source-code level.

We designed this operator so that writing a pass to lower it to the original implicit plus flattened
representation would be very eady.

1.15. EXPRESSION OPERATORS 29

• EXTRACT BITS res= I4,I8,U4,U8 [VH–VL]

Perform a bit-field extraction, specified by the fields bit offset and bit size, on the value computed
by Kid 0. The value of the extracted bitfield is returned. This instruction is more general than
LDBITS/ILDBITS, and may be generated as a result of lowering them.

• PARM res=i,f,z,M,V [VH–VL]

This must be a kid of CALL, ICALL, VFCALL, PICCALL, INTRINSIC CALL or INTRINSIC OP.
It specifies that Kid 0 is an actual parameter in the call.res is allowed to be V only in VH WHIRL, in
which case it has no kid. ty idx gives the high level type of the parameter (as given by the function
prototype). The flags field gives different attributes about the parameter: call-by-reference, in (call-
by-value) and out. The dummy attribute specifies that the parameter is present only to carry the right
alias information to the optimizer, and code to pass the parameter does not need to be generated.
There are additional attributes to represent the results of alias analysis: read-only indicates that the
reference parameter being passed is referenced but not modified; passed-not-saved indicates that the
callee does not save the address passed; not-exposed-use indicates that there is no exposed use of the
passed value in the callee; is-killed indicates that the reference parameter is definitely assigned to in
the callee.

• ASM INPUT res=i,f,z [VH–VL]

This must be a kid of ASM STMT, and specifies that Kid 0 is an expression whose value is the input
operand. The st idx field gives a CLASS NAME symbol table entry whose name is the operand’s
constraint string.

• ALLOCA res=A4,A8 [VH–VL]

Return a pointer to the block of uninitialized local stack space allocated by adjusting the stack pointer.
Kid 0 gives the size in bytes of the block of memory to be allocated. This operator must only appear
as the right-hand-side of a store statement. A zero value for the operand can be used to get the current
base of the stack frame without any allocation. There are two kinds of ALLOCAs: user-specified and
compiler-generated. See DEALLOCA for additional usage requirements for this operator.

1.15.2 Binary Operations

• PAIR res=FQ,z [VH–M]

For res=z, it creates a complex number whose real part is equal to the value in Kid 0 and whose
imaginary part is equal to the value in Kid 1. For res=FQ, it creates a FQ number from the high
part given by Kid 0 and the low part given by Kid 1. res=z is supported only in VH and H WHIRL.
res=FQ is supported only in M WHIRL.

• ADD res=i,f,z [VH–VL]

Return Kid 0 plus Kid 1.

• SUB res=i,f,z [VH–VL]

Return Kid 0 minus Kid 1.

• MPY res=i,f,z [VH–VL]

Return the result when Kid 0 is multiplied by Kid 1. In M WHIRL or lower, for type integer, this
operator can alternatively be represented by XMPY followed by LOWPART so that the multiply
operation can be commonized with respect to another HIGHMPY of the same operands.

• HIGHMPY res=i [VH–VL]

Return the high-order part of the result when Kid 0 is multiplied by Kid 1. In M WHIRL or lower,
this operator can alternatively be represented by XMPY followed by HIGHPART so that the multiply
operation can be commonized with respect to another MPY of the same operands.

30 CHAPTER 1. WHIRL ABSTRACT SYNTAX TREE

a b a mod b a rem b
8 5 3 3
-8 5 2 -3
8 -5 -2 3
-8 -5 -3 -3

Table 1.3: Examples to show relationship between MOD and REM

• XMPY res=i [M–VL]

Return the composite result when Kid 0 is multiplied by Kid 1. This operator is lowered from either
MPY or HIGHMPY, and its result can only be operated on by LOWPART and HIGHPART. Though
its result is actually made up of a pair of values, it can be regarded as being of the same type at
the WHIRL level. The code generator will deal with the details of handling the pair of values. After
optimization, XMPY can only appear as a kid of an STID to a preg. The preg containing the result
can only appear as the operand of LOWPART or HIGHPART.

• DIV res=i,f,z [VH–VL]

Return the quotient when Kid 0 is divided by Kid 1. In M WHIRL or lower, for type integer, this
operator can alternatively be represented by DIVREM followed by LOWPART so that the divide
operation can be commonized with respect to another REM of the same operands.

• MOD res=i [VH–VL]

Return Kid 0 modulus Kid 1. The modulus operator of the form (imodj) is defined as the value of the
expression (i−k ∗ j) for some integer k such that the value of the expression falls in the range between
0 and j or is 0. The sign is the sign of the divisor. −(−i mod −j) yields the same value as (i mod j).
When the sign of the two operands are the same, it yields the same value as REM. When only one
operand is negative and the result is not 0, (i mod j) = (i%j) + j.

• REM res=i [VH–VL]

Return the remainder when Kid 0 is divided by Kid 1. This implements the % operation in C. (a%b)
is defined as the value of the expression a− a

b × b. The sign is the sign of the dividend. −(−a% − b)
yields the same value as (a%b). When the sign of the two operands are the same, it yields the same
value as MOD. In M WHIRL or lower, this operator can alternatively be represented by DIVREM
followed by HIGHPART so that the divide operation can be commonized with respect to another DIV
of the same operands.

• DIVREM res=i [M–VL]

Return the composite result representing both the quotient and the remainder when Kid 0 is divided
by Kid 1. This operator is lowered from either DIV or REM, and its result can only be operated on
by LOWPART and HIGHPART. Though its result is actually made up of a pair of values, it can be
regarded as being of the same type at the WHIRL level. The code generator will deal with the details
of handling the pair of values. After optimization, DIVREM can only appear as a kid of an STID to
a preg. The preg containing the result can only appear as the operand of LOWPART or HIGHPART.

• MAX res=i,f [VH–VL]

Return the maximum of Kid 0 and Kid 1.

• MIN res=i,f [VH–VL]

Return the minimum of Kid 0 and Kid 1.

• MINMAX res=i,f [M–VL]

Return the composite result representing both the minimum and the maximum when Kid 0 is compared
with Kid 1. This operator is lowered from either MAX or MIN, and its result can only be operated

1.15. EXPRESSION OPERATORS 31

on by MAXPART and MINPART. Though its result is actually made up of a pair of values, it can be
regarded as being of the same type at the WHIRL level. The code generator will deal with the details
of handling the pair of values. After optimization, MINMAX can only appear as a kid of an STID to
a preg. The preg containing the result can only appear as the operand of MAXPART or MINPART.

• EQ res=B,i desc=B,i,f,z [VH–VL]

Return true if Kid 0 is equal to Kid 1, false otherwise.

• NE res=B,i desc=B,i,f,z [VH–VL]

Return true if Kid 0 is not equal to Kid 1, false otherwise.

• GE res=B,i desc=i,f [VH–VL]

Return true if Kid 0 is greater than or equal to Kid 1, false otherwise.

• GT res=B,i desc=i,f [VH–VL]

Return true if Kid 0 is greater than Kid 1, false otherwise.

• LE res=B,i desc=i,f [VH–VL]

Return true if Kid 0 is less than or equal to Kid 1, false otherwise.

• LT res=B,i desc=i,f [VH–VL]

Return true if Kid 0 is less than Kid 1, false otherwise.

• BAND res=i [VH–VL]

Return the bitwise AND of Kid 0 and Kid 1.

• BIOR res=i [VH–VL]

Return the bitwise OR of Kid 0 and Kid 1.

• BNOR res=i [VH–VL]

Return the bitwise NOR of Kid 0 and Kid 1.

• BXOR res=i [VH–VL]

Return the bitwise XOR of Kid 0 and Kid 1.

• LAND res=i [VH–VL]

Return the logical AND of Kid 0 and Kid 1. The children and the result are of type boolean. The
code generated may use short-circuiting.

• LIOR res=i [VH–VL]

Return the logical OR of Kid 0 and Kid 1. The children and the result are of type boolean. The code
generated may use short-circuiting.

• CAND res=i [VH–H]

Control flow version of LAND. It evaluates the logical AND of Kid 0 and Kid 1 via short-circuiting.
Kid 1 is not to be evaluated if Kid 0 evaluates to 0. In VH WHIRL, the kids can contain side-effect
operations (via COMMA and RCOMMA). If there are side effects, the lowered form in H WHIRL will
use jumps.

• CIOR res=i [VH–H]

Control flow version of LIOR. It evaluates the logical OR of Kid 0 and Kid 1 via short-circuiting.
Kid 1 is not to be evaluated if Kid 0 evaluates to 1. In VH WHIRL, the kids can contain side-effect
operations (via COMMA and RCOMMA). If there are side effects, the lowered form in HWHIRL will
use jumps.

32 CHAPTER 1. WHIRL ABSTRACT SYNTAX TREE

• SHL res=i [VH–VL]

Return Kid 0 shifted left Kid 1 times. All the low order bits shifted in are set to zero. The exact
semantics depends on the target architecture.

• ASHR res=i [VH–VL]

Return Kid 0 arithmetically shifted right Kid 1 times. The exact semantics depends on the target
architecture.

• LSHR res=i [VH–VL]

Return Kid 0 logically shifted right Kid 1 times. The exact semantics depends on the target architec-
ture.

• COMPOSE BITS res= I4,I8,U4,U8 [VH–VL]

Creates a new integer value by performing bits composition using two operands. The value of Kid 1 is
deposited into the range of bits in Kid 0 as specified by the fields bit offset and bit size. If the value
of Kid 1 is larger than what the bit-field can contain, its value is truncated. The rest of the bits are
taken from the value in Kid 0. The resulting new integer value is returned. res must be the same as
that of Kid 0. This instruction is more general than STBITS/ISTBITS, and may be generated as a
result of lowering them.

• RROTATE res=U4,U8desc=U1,U2,U4,U8 [VH]

Return Kid 0 rotated to the right by the number of bits specified by Kid 1. Only the low order part
of Kid 0 corresponding to desc is used. The rotation amount must not be negative. Only the least
significant bits of Kid 1 sufficient to specify the full bits in desc are used to determine the rotate
amount; the higher order bits of Kid 1 are ignored. The high order bits ofthe result that lie outside of
desc have undefined values.

• COMMA res=i,f,z,M [VH]

Kid 0 must be a BLOCK, while Kid 1 must be an expression of type res. Kid 1 must not be another
COMMA. The statements in the block given by Kid 0 are executed before evaluating and returning
the value of Kid 1. A call can be generated in the middle of an expression in VH WHIRL using this
operator. If the return value of the call is to be used in the expression, Kid 1 can load the dedicated
pseudo-register that contains the function return value.

• RCOMMA res=i,f,z,M [VH]

Kid 0 must be an expression of type res, while Kid 1 must be a BLOCK. Kid 0 must not be another
RCOMMA. The statements in the block given by Kid 1 are executed after evaluating Kid 1. The value
of Kid 0 is returned.

1.15.3 Ternary Operations

• SELECT res=i,f desc=B,i [H–VL]

Kid 0 must evaluate to a boolean expression. Both Kid 1 and Kid 2 must have res as the result type.
Return Kid 1 if Kid 0 evaluates to true. Otherwise, return Kid 2. The evaluation of both Kids 1 and
2 can be performed regardless of the value of Kid 0. Converting an if statement to this operator is
tantamount to speculation if Kid 1 or 2 are expressions.

• CSELECT res=i,f,M,Vdesc=i [VH]

Control flow version of SELECT. The kids are the same as SELECT, but only one of Kid 1 and Kid
2 is to be evaluated depending on the result of Kid 0.

• MADD res=f [VL]

Return (Kid 1 * Kid 2) + Kid 0.

1.15. EXPRESSION OPERATORS 33

• MSUB res=f [VL]

Return (Kid 1 * Kid 2) - Kid 0.

• NMADD res=f [VL]

Return - ((Kid 1 * Kid 2) + Kid 0).

• NMSUB res=f [VL]

Return - ((Kid 1 * Kid 2) - Kid 0).

1.15.4 N-ary Operations

• ARRAY res=A4,A8 [VH–H]

This operator uses array addressing rules (row-major, zero-based) to return an address. The number of
dimensions of the array, n, is inferred from kid-count shifted right by 1. An internal field, element size,
gives the size of each array element in bytes. If element size is negative, it specifies a non-contiguous
array in FORTRAN90. Kid 0 is the address of the base of the array. Kids 1 to n give the size of each
dimension in contiguous arrays, and the multiplier for each index in non-contiguous arrays. Kids n+1
to 2n give the index expressions for dimensions 0 to n-1 respectively (adjusted so that the array index
has a zero lower bound). If we name Kids 1 to n as m1..mn, and if we name the values of the index
expressions x1..xn (i.e. xi = the value of Kid i+n), and if element size is s, then for contiguous arrays,
the resultant address is:

kid 0 + s

n∑
i=1

xi

n∏
j=i+1

mj


and for non-contiguous arrays, the resultant address is:

kid 0 + (−s)
n∑

i=1

ximj

In contiguous arrays, for dimensions d = 2 . . . n, 0 ≤ xd < md; in other words, excepting the first
dimension, each index expression must be in bounds.

• INTRINSIC OP res=I1,I2,U1,U2, i,f,z,M [VH–M]

This operator applies the intrinsic operation as specified by the intrinsic field to the operands specified
by Kids 0..n-1, which must be PARM nodes, and returns the result. A flags field gives attributes about
the intrinsic that are useful for optimization around the intrinsic. This operator can only be used for
intrinsics that have no side effects and are pure functions. This means the value returned is dependent
only on the arguments, which may be passed by reference. Depending on the intrinsic, its result type
and compilation options, it will either become a call or a sequence of instructions after it is lowered to
L WHIRL. The types I1, I2, U1, U2, M are only allowed in VH WHIRL.

• IO ITEM [VH–H]

This can appear only as kids of IO, and represents an item specified in a FORTRAN I/O statement.
The intrinsic field gives the type of I/O item specified. This operator has either 0, 1, 2 or 3 kids
depending on the type of I/O item. The kids are expression trees representing the contents of the
I/O item. Call and GOTO statements are allowed to be nested within the expression tree. Thus, this
operator can indicate implicit control flow.

34 CHAPTER 1. WHIRL ABSTRACT SYNTAX TREE

1.16 Intrinsics

An intrinsic in WHIRL is an operation that cannot be mapped to exactly one machine instruction in the
target architecture. However, there are some common language constructs that we exempt from this rule
because they have common occurrences, like CVTL, MAX and MIN.

The list of intrinsics that WHIRL support is defined and maintained separately from the WHIRL oper-
ators. Both the call and the intrinsics operators carry attributes in the flags field that provide information
to the compiler about the call or intrinsic operation. But intrinsics are distinct from calls because they
represent ”functions” that the compiler has special knowledge about and can take advantage of.

We support two intrinsic operators. INTRINSIC OP is an expression operator, while INTRINSIC CALL
is a statement. The expression form allows the optimizer to treat the intrinsic the same as any other
expression operator, so the intrinsic can benefit from any optimizations involving expressions, like common
subexpression elimination. But because INTRINSIC OP can only be defined for intrinsics that have no side
effect, only a limit number of intrinsics can be represented under INTRINSIC OP.

1.17 Aggregates Specification

Fortran 90 provides program constructs that represent aggregates of array elements in a compact form.
Translation of such aggregate operations requires the introduction of loops. Operations on aggregates provide
optimization opportunities that could be obscured or made more difficult once those operations are lowered
into loops operating on array elements. Thus, we define VH WHIRL as the level of WHIRL that corresponds
to program constructs as they appear in Fortran 90 programs. VH WHIRL constructs are also generated
by Fortran 77 programs that use the 8X extensions. In VH WHIRL, we allow a WHIRL node to specify an
aggregate of values (as opposed to a single value). All WHIRL operators can take on aggregate values as
operands. The ARRAYEXP operator is used to give the dimension information of an array expression.

Among the WHIRL operators for aggregates specification, TRIPLET, ARRAYEXP and ARRSECTION
are expression operators. WHERE is a structured control flow statement.

• TRIPLET res=i [VH]

This operator produces a one dimensional array of integers in a linear progression. Kid 0 evaluates to
the starting integer value of the progression. Kid 1 evaluates to an integer value that gives the stride
in the progression. Kid 2 evaluates to the number of values in the progression.

• ARRAYEXP res=i,f,z [VH]

This operator indicates that Kid 0 is an array expression with the number of dimensions num dim
equal to the kid count-1. Kid 1 to Kid num dim give the number of elements for each dimension. An
ARRAYEXP is required at the root of a tree that specifies array expressions. This means that it will
occur at the statement level for aggregate stores. Within the tree, ARRAYEXP is not required unless
an operand is of different shape(i.e. smaller number of dimensions) than what is expected by its parent.

The ARRAYEXP node can also be used with only one child to indicate that the child expression
is an array expression. This can occur due to the requirement that all array valued children of the
ARRSECTION node are so indicated.

• ARRSECTION res=A4,A8 [VH]

This node corresponds to the ARRAY, except that it generates an aggregate of addresses. The number
of indices is given by (kid count-1)/2.

The field element size gives the size of each array element in bytes. Kid 0 is the address of the base of
the array. Kids 1 to n give the sizes of all the dimensions of the array as declared. Each of Kids n+1
to 2n is either an integer expression or a one-dimensional array integer expression that indexes into
the array at the corresponding dimension, adjusted so that the array index has a zero lower bound.
The resulting array expression has a number of dimension corresponding to the number of kids from
n+1 to 2n that are array expressions. It is required that each array-valued index child be either an
TRIPLET or an ARRAYEXP of only one dimension, although the ARRAYEXP may be the marker
(1 child) form.

1.18. ASCII WHIRL FORMAT 35

• WHERE [VH]

This is a structured control flow statement that implements the Fortran 90 masked assignment. It
has three kids. Kid 0 must be a boolean-typed array expression that forms the mask. Kid 1 and 2
are BLOCKs consisting of only ISTORE nodes for aggregates of array elements. The shape of arrays
or array sections being stored into must be the same as the shape of the boolean array expression of
Kid 0. For each array element, either Kid 1 or Kid 2 is executed depending on the value of the mask.
When an element of the mask in Kid 0 is true, only the stores specified in Kid 1 are performed to the
corresponding elements of the arrays or array sections. When an element of the mask in Kid 0 is false,
only the stores specified in Kid 2 are performed to the corresponding elements of the arrays or array
sections.

1.18 ASCII WHIRL Format

Although the WHIRL exists internally in the form of trees, it can be translated to the ASCII format for
perusal. The IR portion of WHIRL has a standard ASCII format that allows it to be edited and translated
back to binary form. The symbol table portion of WHIRL, however, cannot be translated back to binary
form. Thus, to produce a valid WHIRL binary file from ASCII WHIRL, it is necessary to specify the original
WHIRL file that contains the valid symbol table. When the ASCII IR is translated back into binary form,
the original symbol table is incorporated into the output WHIRL file. In the ASCII WHIRL format, each line
corresponds to one WHIRL node, with the name of the operator being the first field of each line. Additional
fields in the node are displayed following the operator name. res and desc are printed as first and second
prefixes of the operator name. By convention, the res or desc is omitted if there is only one legal type for
that field allowed for that operator. For operators in which desc is always the

Statements belonging to the same BLOCK are printed in the order of execution. Expressions are printed
in postfix notation, while the structured control flow constructs are printed in prefix notation. This ensures
that the order of appearances of the operands in WHIRL corresponds more closely to the generated assembler
output. To facilitate visual inspection and parsing by the ASCII WHIRL reader, keywords are inserted.
Figure 1.4 shows the keywords used in displaying the structured control flow statements. The comment
character # is used to specify that the rest of the line is to be ignored. This allows the compiler to insert
information in the ASCII WHIRL dump that helps debugging. In particular, the original text of the source
line can be printed next to the WHIRL code generated from it.

36 CHAPTER 1. WHIRL ABSTRACT SYNTAX TREE

DO_LOOP
<index var>

INIT
<initialization statement>

COMP
<comparison for end condition>

INCR
<increment statement>

BODY
BLOCK
...

END_BLOCK

IF
<condition>

THEN
BLOCK
...

END_BLOCK
ELSE
BLOCK
...

END_BLOCK
END_IF

FUNC_ENTRY
IDNAME
IDNAME

BODY
BLOCK
...

END_BLOCK

DO_WHILE
<index var>

BODY
BLOCK
...

END_BLOCK

WHILE_DO
<index var>

BODY
BLOCK
...

END_BLOCK

Figure 1.5: ASCII Formats for Structured Control Flow Statements

Chapter 2

Whirl Symbol Table

2.1 Introduction and Overview

This document describes the symbol table portion of the WHIRL file produced and used by the Open64
compiler. A separate document describes the WHIRL intermediate program representation. Section 2.22
contains some helpful programming notes.

The WHIRL symbol table is made up of a series of tables. They are designed for compilation, optimization
and storage efficiency. The way the tables are organized closely corresponds to the compiler’s view of the
symbol table. The model also enhances locality in references to the tables. The WHIRL symbol table
is divided into the global part and the local part. The local part is organized by program units (PUs).
Figure 2.1 gives a pictorial overview of the WHIRL symbol table as produced by the front-ends. There are
different kinds of tables. The tables that can appear in both the global and local part of the symbol table
are:

1. ST TAB – This is the fundamental building block of the symbol table. In general, any symbol with a
name occupies an entry in this table. Any constant value that reside in memory (floating point and
string constants) also occupies an entry in this table.

2. INITO TAB – Each entry specifies the initial value(s) of an initialized data object. It in turn refers
to one or more entries in the INITV TAB for initial values of each individual component of the data
object.

3. ST ATTR TAB – Each entry associates some miscellaneous attributes with an entry in the ST TAB.

The tables that can only appear in the global part of the symbol table are:

1. PU TAB – Each entry represents a procedure that appears in the source file as either function prototype
or definition.

2. TY TAB – Each entry represents a distinct type in the program. It in turn refers to the FLD TAB,
TYLIST TAB, ARB TAB, or PU TAB to specify the full structure of each type.

3. FLD TAB – Each entry specifies a field in a struct type.

4. TYLIST TAB – Each entry specifies a parameter type in a function prototype declaration.

5. ARB TAB – Each entry gives information about a dimension of an array type.

6. TCON TAB – The values of any non-integer constants are stored here. For string constants, it in turn
refers to the TCON STR TAB.

7. BLK TAB – Each entry specifies layout information of a block of data.

8. INITV TAB – Each entry describes the initial value of a scalar component of an initialized data object.

37

38 CHAPTER 2. WHIRL SYMBOL TABLE

Figure 2.1: Whirl symbol table produced by the front ends.

Global SYMTAB

ST TAB PU TAB TY TAB TYLIST TAB TCON TAB BLK TAB INITV TAB

INITO TAB FLD TAB ARB TAB TCON STR TAB STR TAB ST ATTR TAB

PU1 SYMTAB

ST TAB INITO TAB LABEL TAB PREG TAB ST ATTR TAB

...

PUn SYMTAB

ST TAB INITO TAB LABEL TAB PREG TAB ST ATTR TAB

9. STR TAB – All strings are stored here. They include names of variable, types, labels, etc.

10. TCON STR TAB – All string literals defined in the user program are stored in this table.

The tables that can only appear in the local part of the symbol table are:

1. LABEL TAB –Information associated with each WHIRL label used in the PU is stored here.

2. PREG TAB –Information associated with each pseudo-register used in the PU is stored here.

Apart from the above tables, each compiler component is free to allocate additional tables for its own
internal use in storing extra information. The additional tables are to have the same number of entries and
be referred to by the same type of index as one of the above tables. As a general rule, the first entry of each
table has index 1; index 0 is reserved to stand for uninitialized index value. The design also assumes that
any table will never grow to more than 16 million entries, so that only 24 bits are needed to contain a table
index. An exception is STR TAB, in which the index is really a byte offset.

The tables listed so far mainly serves the purpose of communicating information gathered by the front-
ends to the back-end phases during compilation. The back-end optimization phases may create more informa-
tion, and the new information can reside in additional tables created for the purpose of passing information
to the other back-end components. These tables will be prefixed by the name of the component that cre-
ates the information in the table, e.g. IPA ST TAB, WOPT ST TAB, etc. In particular, BE ST TAB
(Section 2.20.1) serves to communicate information among the back-end components, including IPA.

The remaining sections of this chapter describe the symbol table structures in more details and the
interfaces to them.

2.2. SCOPE 39

2.2 SCOPE

Depending on the context, a different set of symbol tables might become visible. For example, in a nested
procedure, three ST TABs are visible –its own local ST TAB, the parent PU’s ST TAB, and the global
ST TAB. Associated with each PU, a SCOPE array is defined for specifying the list of visible tables. The
index to this array is the lexical scope. Index 0 is reserved. Index 1 refers to the global symbol tables, and
index 2 refers to the local symbol tables. A nested procedure will have an index starting at 3, depending
on the level of nesting. The type of the SCOPE array index is SYMTAB IDX, which is an unsigned 8-bit
integer.

Strictly speaking, SCOPE arrays are not part of the symbol table, and they are never written out to
a WHIRL file. Tables that can only appear in the global part of the symbol table are always visible. So
they are not explicitly described by the SCOPE array. Each element of a SCOPE array has the following
structure, size 24 bytes:

Table 2.1: Layout of a SCOPE Array Element.
Offset Field Type Description Field size

byte 0 pool MEM POOL * pointer to the memory pool for local tables 1 word

byte 4 st ST * pointer to the ST for this PU 1 word

byte 8 st tab ST TAB * pointer to the table of ST entries 1 word

byte 12 label tab LABEL TAB * pointer to the table of labels 1 word

byte 16 preg tab PREG TAB * pointer to the table of pseudo registers 1 word

byte 20 inito tab INITO TAB * pointer to the table of INITO entries. 1 word

byte 24 st attr tab ST ATTR TAB * pointer to the table of ST ATTR entries 1 word

For the global scope (i.e., index 1of the SCOPE array), the fields pool, st, label tab, and preg tab are
not used, and contain the NULL pointer.

2.3 ST TAB

Each entry of this table is an ST. A symbol in the program is uniquely identified by a value of type ST IDX.

2.4 ST IDX

ST IDX is of size 32 bits, and is composed of two parts:

Table 2.2: Layout of ST IDX
Field Description Field position and size
level lexical level least significant 8 bits
index index to ST TAB most significant 24 bits

The low order 8 bits are used to index into the SCOPE array in order to get to the ST TAB.

2.4.1 ST Entry

The ST entry has the following structure, size 32 bytes:

name idx/tcon : If sym class is CLASS CONST, the tcon field holds the index to the TCON TAB. For
all other sym class values, the name idx field holds the index to the STR TAB. If the export class
is EXPORT LOCAL or EXPORT LOCAL INTERNAL, the name is optional. And when there is no
name, name idx should be zero.

flags/flags ext : Miscellaneous attributes, See Section 2.3.5.

40 CHAPTER 2. WHIRL SYMBOL TABLE

Table 2.3: Layout of ST
Offset Field Description Field size
byte 0 name idx STR IDX to the name string 1 word
byte 0 tcon TCON IDX of the constant value 1 word
byte 4 flags misc. attributes of this entry 1 word
byte 8 flags ext more flags for future extension 1 byte
byte 9 sym class class of symbol 1 byte
byte 10 storage class storage class of symbol 1 byte
byte 11 export export class of the symbol 1 byte
byte 12 type TY IDX of the high-level type 1 word
byte 12 pu PU IDX if program unit 1 word
byte 12 blk BLK IDX if CLASS BLOCK 1 word
byte 16 offset offset from base 2 words
byte 24 base idx ST IDX of the base of the allocated block 1 word
byte 28 st idx ST IDX for this entry 1 word

sym class : The class of symbol, see Table 2.4.

storage class : The storage class of symbol, see Table 2.5.

export : The export class of symbol, see Section 2.3.4.

type/pu/blk : If sym class is CLASS FUNC, then the pu field holds the index to the PU TAB. If sym class
is CLASS BLOCK, this field holds the BLK IDX. If sym class is CLASS NAME, this field must be
zero. Forall other valid sym class values, the type field holds the TY IDX that describes the type of
this symbol.

One exception is a CLASS NAME symbol that has the ST ASM FUNCTION ST bit set, in which
case the pufield holds the index to the PU TAB.

offset : The byte offset from base idx. If base idx is equal to st idx, then offset must be zero.

base idx : This is the ST IDX for the ST that describes the base address (i.e., this symbol is an alias of
the specified symbol). If it is equal to it’s own st idx, then the address of this symbol is independently
assigned. If ST IS WEAK ALIAS is set, base idx is overloaded to specify the corresponding strong def-
inition (see Table 2.9 and Section 2.3.7). If ST IS SPLIT COMMON is set, base idx is overloaded to be
the full common definition. It is illegal to set both ST IS WEAK ALIAS and ST IS SPLIT COMMON.

The following rules apply when setting the base address of a symbol. If a symbol A is based on symbol
B (i.e. base idx of A is equal to st idx of B), then:

1. storage class of A must be the same as storage class of B, except when the sym class of B is
CLASS BLOCK and storage class of B is SCLASS UNKNOWN.

2. if sym class of A is CLASS BLOCK, sym class of B must be CLASS BLOCK.

3. offset of A plus the size of A must not be larger than the size of B.

st idx : ST IDX of this symbol. This is used mainly for fast conversion from a pointer to a given ST to the
corresponding ST IDX.

2.4.2 Symbol Class and Storage Class

There is a symbol class and a storage class associated with each ST entry, both of which are enumeration
types:

2.4. ST IDX 41

Table 2.4: Symbol Class

Name Value Description
CLASS UNK 0 uninitialized
CLASS VAR 1 data variable
CLASS FUNC 2 function
CLASS CONST 3 constant, a TCON holds the real value
CLASS PREG 4 pseudo register
CLASS BLOCK 5 base address for a block of data
CLASS NAME 6 placeholder for a named ST entry
CLASS MODULE 7 reserved for module variables but not cur-

rently in use
CLASS TYPE 8 a derived type name
CLASS PARAMETER9 a Fortran parameter

Table 2.5: Storage Class

Name Value Description

SCLASS UNKNOWN 0 no specific storage class (e.g., a block of data of mixed
storage classes)

SCLASS AUTO 1 local stack variable

SCLASS FORMAL 2 formal parameter

SCLASS FORMAL REF 3 reference parameter

SCLASS PSTATIC 4 PU scope static data

SCLASS FSTATIC 5 file scope static data

SCLASS COMMON 6 common block (linker allocated)

SCLASS EXTERN 7 unallocated external data or text

SCLASS UGLOBAL 8 uninitialized global data

SCLASS DGLOBAL 9 initialized global data

SCLASS TEXT 10 executable code

SCLASS REG 11 register variable

SCLASS CPLINIT 12 special data object describing initialization of
static/global C++ classes.

SCLASS EH REGION 13 special table describing C++ exception handling (See
Section 2.3.6)

SCLASS EH REGION SUPP14 supplemental data structure for C++ exception han-
dling (See Section 2.3.6)

SCLASS DISTR ARRAY 15 data object that is placed in the special Elf section
MIPS distr array

SCLASS COMMENT 16 names of such symbols are to be placed in the special
Elf section comment.

SCLASS THREAD PRIVATE FUNCS17 data object that is placed in the special Elf section
MIPS thread private funcs

SCLASS MODULE 18 module symbol (not a common block)

Not all combinations of symbol class and storage class are valid. Only those listed in Table 2.6 are
allowed:

42 CHAPTER 2. WHIRL SYMBOL TABLE

Table 2.6: Valid Symbol Class and Storage Class Combinations

Symbol class Storage class Description

CLASS UNK SCLASS UNKNOWN uninitialized

CLASS VAR SCLASS AUTO stack variable

CLASS VAR SCLASS FORMAL formal parameter

CLASS VAR SCLASS FORMAL REF reference parameter

CLASS VAR SCLASS PSTATIC PU scope static variable

CLASS VAR SCLASS FSTATIC file scope variable

CLASS VAR SCLASS COMMON common block

CLASS VAR SCLASS EXTERN unallocated external variable

CLASS VAR SCLASS UGLOBAL uninitialized global variable

CLASS VAR SCLASS DGLOBAL initialized global variable

CLASS VAR SCLASS CPLINIT special data object describing initialization of
static/global C++ classes.

CLASS VAR SCLASS EH REGION special table describing C++exception han-
dling

CLASS VAR SCLASS EH REGION SUPP supplemental data structure for C++ excep-
tion handling

CLASS VAR SCLASS DISTR ARRAY data object that is placed in the special Elf
section MIPS distr array

CLASS VAR SCLASS THREAD PRIVATE FUNCS data object that is placed in the special Elf
section MIPS thread private funcs

CLASS FUNC SCLASS EXTERN undefined function

CLASS FUNC SCLASS TEXT defined function

CLASS CONST SCLASS FSTATIC constant

CLASS CONST SCLASS EXTERN constant symbol defined in another file (e.g.
in IPA-generated symbol table)

CLASS PREG SCLASS REG pseudo register CLASS BLOCK all stor-
age classes except SCLASS UNKNOWN and
SCLASS REG

CLASS BLOCK SCLASS UNKNOWN a block of data or text of unspecified storage
class (e.g., a block of mixed storage classes)

CLASS NAME SCLASS UNKNOWN an ST entry that only has a name and noth-
ing else, usually used as a placeholder for spe-
cial symbols that are passed to the linker

CLASS NAME SCLASS COMMENT an ST entry whose name is to be placed in
the Elf section .comment

2.4.3 Export Scopes

This enumeration describes the possible scopes that symbols exported from a file may map into, i.e., linker
globals for DSO (dynamically shared object)-related components.

Only an EXPORT LOCAL or EXPORT LOCAL INTERNAL symbol must be defined in the file being
compiled. All others can be either defined or undefined. All symbols except EXPORT PREEMTIBLE must
be defined in the current DSO or executable.

Only EXPORT LOCAL and EXPORT LOCAL INTERNAL symbols are allowed in a local ST TAB.
Symbols with all other export scopes must be placed in the global ST TAB. Furthermore, the ST entries of
all functions, regardless of export scope, must be placed in the global ST TAB.

Table 2.7: Export Scopes

Export Scope Value Description

2.4. ST IDX 43

Table 2.7: Export Scopes

Export Scope Value Description
EXPORT LOCAL 0 not exported, must be defined in current file (e.g.

C static data), address can be exported from DSO
using a pointer

EXPORT LOCAL INTERNAL 1 not exported, must be defined in current file, only
visible within current file, only used within the
DSO or executable

EXPORT INTERNAL 2 exported, only visible and used within the DSO
or executable, must be defined in current DSO or
executable

EXPORT HIDDEN 3 exported, name is hidden within DSO or exe-
cutable, address can be exported from DSO us-
ing a pointer, must be defined in current DSO or
executable

EXPORT PROTECTED 4 exported, non-preemptible, must be defined in
current DSO or executable

EXPORT PREEMPTIBLE 5 exported, preemptible
EXPORT OPTIONAL 6 correspond to STO OPTIONAL in Elfsymbol ta-

ble (see <sys/elf.h>)

Valid combinations of export scopes and storage classes are listed in the following table:.

44 CHAPTER 2. WHIRL SYMBOL TABLE

Table 2.8: Valid Combinations of Storage Class and Export Scopes
Storage class Export scopes Description

SCLASS UNKNOWN
SCLASS AUTO
SCLASS FORMAL
SCLASS FORMAL REF
SCLASS PSTATIC
SCLASS FSTATIC
SCLASS CPLINIT
SCLASS EH REGION
SCLASS EH REGION SUPP
SCLASS DISTR ARRAY
SCLASS THREAD PRIVATE FUNCS
SCLASS COMMENT

EXPORT LOCAL
EXPORT LOCAL INTERNAL
EXPORT INTERNAL
EXPORT HIDDEN
EXPORT PROTECTED
EXPORT PREEMPTIBLE

DSO scope data or text symbols

SCLASS COMMON
SCLASS DGLOBAL

EXPORT LOCAL
EXPORT LOCAL INTERNAL member of a common or data block;

these symbols must have base idx
pointing to an ST entry with the
same storage class

SCLASS EXTERN

EXPORT LOCAL
EXPORT LOCAL INTERNAL local symbols that are not de-

fined in the current file; use
in IPA-generated file where a
CLASS CONST symbol is defined
in a separate file.

SCLASS TEXT

EXPORT LOCAL
EXPORT LOCAL INTERNAL static functions

SCLASS TEXT

EXPORT INTERNAL
EXPORT HIDDEN
EXPORT PROTECTED
EXPORT PREEMPTIBLE

global functions

SCLASS REG
EXPORT LOCAL
EXPORT LOCAL INTERNAL registers

2.4. ST IDX 45

2.4.4 ST Flags

Associated with each ST entry are one or more attributes that describe specific property of it. Some of them
are mutually exclusive and some of them are related. They are described in the following table:

Table 2.9: Miscellaneous Attributes of an ST Entry Flag/Value Description

Symbol Description

ST IS WEAK SYMBOL
0x00000001

weak name

• not valid for EXPORT LOCAL or
EXPORT LOCAL INTERNAL

• see Section 2.3.7 for semantics of weak symbols

ST IS SPLIT COMMON
0x00000002

part of a split common

• base idx gives the ST IDX of the corresponding complete
common definition

• ST IS WEAK SYMBOL must not be set
ST IS NOT USED0x00000004 symbol is not referenced

ST IS INITIALIZED
0x00000008

initialized static or global variable

• only valid for CLASS VAR, CLASS CONST, and
CLASS BLOCK

• only valid for SCLASS PSTATIC, SCLASS FSTATIC,
SCLASS EXTERN, SCLASS DGLOBAL,
SCLASS UGLOBAL, SCLASS CPLINIT,
SCLASS EH REGION, SCLASS EH RGION SUPP,
SCLASS DIST ARRAY, and
SCLASS THREAD PRIVATE FUNCS.

• also valid for SCLASS UNKNOWN if symbol class is
CLASS BLOCK

• for SCLASS UGLOBAL, ST INIT VALUE ZERO must be
set(uninitialized globals and globals explicitly initialized to
zero are equivalent)

• must be set for SCLASS DGLOBAL

• for CLASS VAR, if ST INIT VALUE ZERO is not set,
there must be a corresponding INITO entry

ST IS RETURN VAR
0x00000010

return value for Fortran function

• only valid for SCLASS AUTO

ST IS VALUE PARM
0x00000020

parameter is passed by value

• only valid for SCLASS FORMAL

46 CHAPTER 2. WHIRL SYMBOL TABLE

Table 2.9: Miscellaneous Attributes of an ST Entry Flag/Value Description

Symbol Description

ST PROMOTE PARM
0x00000040

parameter has been promoted from chars/short to int or from
float to double

• only valid for C/C++

ST KEEP NAME W2F
0x00000080

whirl2f should neither declare nor rename this symbol

• only valid for CLASS VAR

ST IS DATAPOOL 0x00000100 Fortran data pools
ST IS RESHAPED 0x00000200 symbol has a distribute reshape pragma supplied for it; only valid

for CLASS VAR

ST EMIT SYMBOL 0x00000400

must appear in the symbol table of the Elf object file

• only valid for CLASS VAR, CLASS NAME, and
CLASS FUNC,

• used by C++ to force certain local symbols to be written
out to the Elf object file

ST HAS NESTED REF
0x00000800

symbol is referenced by a PU nested in the current PU

• only valid for SCLASS AUTO, SCLASS PSTATIC,
SCLASS FORMAL, and SCLASS FORMAL REF.

ST INIT VALUE ZERO
0x00001000

uninitialized global or static symbol

• only valid for CLASS VAR

• only valid for SCLASS EXTERN, SCLASS UGLOBAL,
SCLASS FSTATIC, and SCLASS PSTATIC

• ST IS INITIALIZED must be set

• also valid for symbol explicitly initialized to zero

ST GPREL 0x00002000

can be accessed via an offset from the global pointer

• only valid for CLASS VAR and CLASS CONST

• not valid for SCLASS AUTO, SCLASS FORMAL, and
SCLASS FORMAL REF

ST NOT GPREL 0x00004000

can not be accessed via an offset from the global pointer

• only valid for CLASS VAR and CLASS CONST

• not valid for SCLASS AUTO, SCLASS FORMAL, and
SCLASS FORMAL REF

2.4. ST IDX 47

Table 2.9: Miscellaneous Attributes of an ST Entry Flag/Value Description

Symbol Description

ST IS NAMELIST 0x00008000

special symbol for namelists

• only valid for CLASS VAR

• used by whirl2f to identify namelist symbols

ST IS F90 TARGET
0x00010000

symbol may be accessed by dereferencing an F90 pointer

• only valid for CLASS VAR

• if not set, no direct load or store to this symbol can alias
with any load or store through an F90 pointer

• if not set, no indirect load or store through an F90 pointer
can access this item

ST DECLARED STATIC
0x00020000

VMS formals declared static

• only valid for CLASS VAR

ST IS EQUIVALENCED
0x00040000

part of an Fortran equivalence

• only valid for CLASS VAR

ST IS FILL ALIGN 0x00080000

symbol has a fill symbol or align symbol pragma supplied

• only valid for CLASS VAR

ST IS OPTIONAL ARGUMENT
0x00100000

formal parameter is optional

• only valid for SCLASS FORMAL and
SCLASS FORMAL REF

• it is illegal to speculate loads/stores of this symbol

48 CHAPTER 2. WHIRL SYMBOL TABLE

Table 2.9: Miscellaneous Attributes of an ST Entry Flag/Value Description

Symbol Description

ST PT TO UNIQUE MEM
0x00200000

memory location pointed to by this symbol cannot be accessed
via any other way

• only valid for SCLASS VAR

• only valid for pointer, or non-scalar type that contains
pointers

• only valid for compiler-generated symbols

• for non-scalar type, such as a struct that contains a pointer
or an array of pointers, this flag applies to all pointers
within the structure

• a pointer with this bit set refers to a memory location that
is never accessed indirectly via any other pointer or directly
via any local or global variable in the entire program

• the compiler phase that sets this bit must guarantee that
the above property holds even through inlining or other
code motion

• copying such pointers to another pointers is allowed, as long
as

• these other pointers are never dereferenced

ST IS TEMP VAR 0x00400000

compiler generated temporary variable or formal parameters

• only valid for SCLASS AUTO, SCLASS FORMAL, and
SCLASS FORMAL REF

ST IS CONST VAR 0x00800000

read-only static or global variable

• only valid for CLASS VAR

• not valid for SCLASS AUTO, SCLASS FORMAL, and
SCLASS FORMAL REF

• compiler can allocate this symbol in read-only data segment

ST ADDR SAVED 0x01000000

the address of this symbol is saved to another variable

• not valid for SCLASS REG

ST ADDR PASSED 0x02000000

the address of this symbol is passed to another PU as ac-
tual parameter

• not valid for SCLASS REG

• this flag is now re-computed by the compiler backend
and is not set by the frontend

2.4. ST IDX 49

Table 2.9: Miscellaneous Attributes of an ST Entry Flag/Value Description

Symbol Description

ST IS THREAD PRIVATE
0x04000000

symbol is a private data object of an MP program

• storage of this symbol is not shared by the threads
of an MP program

ST PT TO COMPILER GENERATED MEM
0x08000000

symbol is a pointer to compiler-allocated memory space

• only valid for pointer type

• only valid for compiler-generated symbols

• pragmas or other data object attributes specified by
users do not apply to this memory location because
it is not visible to them

ST IS SHARED AUTO
0x10000000

an automatic variable that is accessed within a parallel
region and has shared scope

• only valid for SCLASS AUTO

ST ASSIGNED TO DEDICATED PREG
0x20000000

symbol is associated to a dedicated (hardware) register

• compiler should always keep this symbol’s value in
the specified register

• only valid for CLASS VAR

• must be volatile type

ST ASM FUNCTION ST
0x40000000

name of this symbol is an assembly language code
corresponding to a program unit

• only valid for symbols in the global symbol table

• only valid for CLASS NAME,
SCLASS UNKNOWN

• only valid for EXPORT LOCAL

• not valid for nested PU

• must have valid PU IDX, and the corresponding
PU entry must have PU NO DELETE and
PU NO INLINE bits set, with a 0 TY IDX.

2.4.5 Exception Handling Region

Symbols of storage class SCLASS EH REGION are allocated by the code generator for the tables that
control exception-handling. These tables are allocated in a special section created by the linker; they
never correspond directly to program entities. They have no existence before code generation, so they are
never referred to in the WHIRL. Symbols of storage class SCLASS EH REGION SUPP represent initialized
variables created by the frontend to provide supplementary information about exception-handling actions

50 CHAPTER 2. WHIRL SYMBOL TABLE

to be taken by the exception-handling runtimes when an exception is thrown. They are allocated in a
second special section created by the linker. They appear in the ereg suppfield of the WHIRL, but only the
exception-handling part of the code generator should ever look at them.

The data in the sections corresponding to the storage class SCLASS EH REGION and the stor-
age class SCLASS EH REGION SUPP should be readonly by the exception-handling runtimes and
should never be modified once it is generated. Symbols of storage class SCLASS EH REGION or
SCLASS EH REGION SUPP have a very unique semantic with respect to storage and scope. They are
local to the PU in terms of scope, meaning that they can only be referenced from within the defining PU.
Their storage is not allocated form the stack, but from the global storage area.

Hence, multiple instances of the same PU (e.g., recursive calls) share the same memory locations and
values of these symbols. However, they differ from SCLASS PSTATIC symbols in that when the defining
PU is cloned or inlined, new copies of these symbols need to be created.

2.4.6 Semantics of Weak Symbols

The semantics of a weak symbol depends on its storage class and base idx, which is summarized in the
following table:

Table 2.10: Semantics of Weak Symbols
storage class base idx != st idx base idx == st idx

SCLASS TEXT

SCLASS UGLOBAL

SCLASS DGLOBAL
weak symbol that has storage al-
located (See note 1)

weak definition before data lay-
out (See note 2)

SCLASS EXTERN weak symbol with an alias to a
strong definition (See note 3)

undefined weak symbol (See note
4)

1. This refers to defined variables or functions that are marked weak. After layout, they can be based on
other symbols. The weak flag means that they can be preempted by a strong definition. When they
are preempted, their associated storage is either wasted or can be deleted.

2. Similar to (1), with the exception that storage of this symbol has not been laid out. Basically, treat (1)
and (2) as regular variable or function definitions, with the exception that they might be preempted by
a strong definition. Once preempted, they corresponding storage cannot be referenced via this symbol
name.

3. This is a weak alias to a strong definition. The name of this symbol is bound with the storage owned
by the corresponding strong definition (specified by base idx). The weak attribute makes this binding
preemptible.

4. This symbol has no storage of its own and is not associated with any other symbol. The linker should
not complain when no definition can be found, and should assign 0 as its address.

2.5 PU TAB

Each entry of this table gives information about each PU that appears in the source file either as procedure
declaration or function prototype. The index to this table, PU IDX, can be used as a PU identifier. The
PU entry has the following structure, size 24 bytes:

2.5. PU TAB 51

Table 2.11: Layout of PU
Offset Field Description Field size
byte 0 target idx TARGET INFO IDX to the target-specific info. 1 word
byte 4 prototype TY IDX to give the prototype type information 1 word
byte 8 lexical level lexical level (scope) of symbols in this PU 1 byte
byte 9 gp group gp-group number of this PU 1 byte
byte 10 src lang source language of this PU 1 byte
byte 11 unused unused, must be filled with zeros. 5 bytes
byte 16 flags flags associated with this function prototype 2 words

target idx : Index to TARGET INFO TAB, which contains the target-specific information about this PU
such as register usage information, etc. The TARGET INFO TAB is current undefined and is reserved
for future expansion. In the current release, target idx must be zero.

prototype: The TY IDX for the type of the function.

lexical level: Lexical level of symbols defined in this PU (i.e. index to the SCOPE array, see Section 2.2).
It is always greater than 1.

gp group : Gp-group id for this PU; used in multi-got program. Single GOT programs have gp group zero.

src lang : Source language of this PU, see Table 2.13.

unused: For alignment of flags, must be filled with zeros.

flags: Miscellaneous attributes, see Table 2.12.

Table 2.12: Miscellaneous Attributes of a PU

Entry Flag/Value Description

PU IS PURE 0x00000001

pure function

• does not modify the global state

• does not make reference to the global state

PU NO SIDE EFFECTS 0x00000002 does not modify the global state

PU IS INLINE FUNCTION 0x00000004

inline keyword specified

• function may be inlined

PU NO INLINE 0x00000008

function must not be inlined

• mutually exclusive with PU MUST INLINE

PU MUST INLINE 0x00000010

function must be inlined

• mutually exclusive with PU NO INLINE

PU NO DELETE 0x00000020 function must never be deleted

PU HAS EXC SCOPES 0x00000040

has C++ exception handling region, or would have
if exceptions were enabled.

• PU CXX LANG must be set

52 CHAPTER 2. WHIRL SYMBOL TABLE

Table 2.12: Miscellaneous Attributes of a PU

Entry Flag/Value Description

PU IS NESTED FUNC 0x00000080

a nested function

• lexical level must be larger than 2

PU HAS NON MANGLED CALL 0x00000100

function is called with non-reshaped array as ac-
tual parameter

• must keep a copy of the function with non-
mangled name

PU ARGS ALIASED 0x00000200

parameters might point to same or overlapping
memory location

• PU F77 LANG or PU F90 LANG must be
set PU NEEDS FILL ALIGN LOWERING
0x00000400 contains symbols that have the
fill symbol or align symbol pragma specified

PU NEEDS T9 0x00000800 register $t9 must contain the lowest address of the
PU

PU HAS VERY HIGH WHIRL 0x00001000 PU has very high WHIRL

PU HAS ALTENTRY 0x00002000

PU contains alternate entry points

• PU F77 LANG or PU F90 LANG must be
set

PU RECURSIVE 0x00004000 PU is self-recursive, or is part of a multi-function
recursion

PU IS MAINPU 0x00008000 main entry point of a program
PU UPLEVEL 0x00010000 other PU nested in this one
PU MP NEEDS LNO 0x00020000 must invoke LNO on this PU, regardless of com-

pilation options
PU HAS ALLOCA 0x00040000 contains calls to alloca
PU IN ELF SECTION 0x00080000 the code generator must put this PU in its own

Elfsection
PU HAS MP 0x00100000 contains a MP construct
PU MP 0x00200000 a PU created by the MP lowerer

PU HAS NAMELIST 0x00400000

has namelist declaration

• PU F77 LANG or PU F90 LANG must be
set

PU HAS RETURN ADDRESS 0x00800000 contain references to the special symbol
return address

PU HAS REGION 0x01000000 PU has regions in it
PU HAS INLINES 0x02000000 PU has inlined code in it
PU CALLS SETJMP 0x04000000 PU contains calls to setjmp.
PU CALLS LONGJMP 0x08000000 PU contains calls to longjmp.

2.5. PU TAB 53

Table 2.12: Miscellaneous Attributes of a PU

Entry Flag/Value Description

PU IPA ADDR ANALYSIS 0x10000000

the ST ADDR SAVED bits for all symbols refer-
enced in this PU are set by IPA’s address analysis

• the compiler backend should trust the (more
accurate) results of IPA and need not recom-
pute the ST ADDR SAVED bits for this PU

PU SMART ADDR ANALYSIS 0x20000000

suppress the conservative address-taken validation

• do not perform conservative address-
taken verification, which might set the
ST ADDR SAVED bit unnecessarily

• set when more accurately address analysis
has been performed.

0x40000000 obsolete

PU HAS GLOBAL PRAGMAS 0x80000000

a dummy PU that contains global pragmas

• a place holder for all global scope pragmas

PU HAS USER ALLOCA 0x100000000

PU contains user-specified call to alloca()

• if this pu is inlined, an explicitly deallocation
needs to be generated

PU HAS UNKNOWN CONTROL FLOW0x200000000

PU has control flow going in or out of the puscope
that do not following calling convention

• tail-call optimization should be disabled

Each entry of this table is a TY. Any high level type in the program is uniquely identified by a value of
type TY IDX.

Table 2.13: Source Language of a PU
Flag Value Description

PU UNKNOWN LANG
0x00 Source language unknown

PU MIXED LANG
0x01

PU contains code from multiple source languages

• resulted from cross-file inlining

PU C LANG
0x02 Source language is C

PU CXX LANG
0x04 Source language is C++

PU F77 LANG
0x08 Source language is Fortran 77

PU F90 LANG
0x10 Source language is Fortran 90

PU JAVA LANG
0x20 Source language is Java

54 CHAPTER 2. WHIRL SYMBOL TABLE

2.5.1 TY IDX

TY IDX is of size 32 bits, and is composed of two parts. The high order 24 bits is the index to TY TAB. The
low order 8 bits contains information that qualifies the type. Among the low order 8 bits is the alignment
information. The actual alignment is given by 2align.

Table 2.14: Layout of TY IDX.1

Offset Field Description Field size
bit 0 align alignment 5 bits
bit 5 const const type qualifier 1 bit
bit 6 volatile volatile type qualifier 1 bit
bit 7 restrict restrict type qualifier 1 bit
bit 8 index index to TY TAB 24 bits

2.6 TY TAB

TY IDX appears appear in many different places:

1. in WHIRL nodes that access data objects.

2. in ST entries.

3. in components for type specification: TY, FLD, TYLIST.

Each TY has a natural (and maximum) alignment, which can be determined by analysis of the details
of the type. Thus, we omit the natural alignment information from the TY. The alignment of a TY directly
affects the alignment in the TY IDX of an object that encloses or refers to it, unless the object’s own
alignment is modified by pragmas or type casts. An optimization phase may also improve the alignment of
an object by forcing better placement during data layout, in which case it only needs to fix up the alignment
of the ST’s TY IDX. Whenever the alignment in the TY IDX of the WHIRL node and the TY IDX of the ST
being accessed by the WHIRL node do not agree, code generation picks the more efficient(better) alignment
of the two. Thus, if a phase worsens the alignment of an object, it has to fix the TY IDX in all the WHIRL
references to it, which is normally impossible.

The above rule dealing with alignment also applies to the other type qualifying bits: whenever a type
qualifying bit is different between the TY IDX of the WHIRL node and the TY IDX of the ST being accessed
by the WHIRL node, code generation picks the more efficient of the two.

2.6.1 TY entry

The TY entry has the following structure, size 24 bytes:

size : The size of the type in bytes. For KIND FUNCTION and KIND VOID, the size is zero. For
KIND ARRAY, this is the size of the entire array, except when for variable length arrays, the size is
zero.

kind : Field describing if the type is a scalar, structure, etc. See Table 2.16.

mtype : WHIRL data type, see Table 2.17. See Table 2.20 for valid combinations of mtype and kind.

flags : Miscellaneous attributes, see Table 2.18.

1Bit offsets assume big Endian bit ordering. For example, the index field is always the most significant 24 bits, regardless of
the Endianess of the machine.

2.6. TY TAB 55

Table 2.15: Layout of TY
Offset Field Description Field size
byte 0 size size of the type in bytes 2 words
byte 8 kind kind of type 1 byte
byte 9 mtype corresponding WHIRL data type 1 byte
byte 10 flags TY flags 2 bytes
byte 12 fld FLD IDX for struct/class field information 1 word
byte 12 tylist TYLIST IDX for function prototype 1 word
byte 12 arb ARB IDX for array bound description 1 word
byte 16 name idx STR IDX to the name string 1 word
byte 20 etype TY IDX of array element (array only) 1 word
byte 20 pointed TY IDX of the pointed-to type (pointers only) 1 word
byte 20 pu flags function-specific attributes 1 word

Table 2.16: Kinds of TY
Name Value Description
KIND INVALID 0 invalid or uninitialized
KIND SCALAR 1 integer or floating point, no kids
KIND ARRAY 2 array, arb idx points to array bound description,

etype gives the type of the array element
KIND STRUCT 3 structure or union, fld idx points to the field de-

scription
KIND POINTER 4 pointers, pointed gives the type that it points to
KIND FUNCTION 5 function or procedure, tylist idx points to the list

of TY IDX for the return type and parameter
types.

KIND VOID 6 C void type, no kids

Table 2.17: WHIRL Basic Data Type
Flag Value Description
MTYPE FQ 15 SGI long double
MTYPE M 16 memory chunk, for structures
MTYPE C4 17 32-bit complex
MTYPE C8 18 64-bit complex
MTYPE CQ 19 128-bit complex
MTYPE V 20 void type
MTYPE BS 21 bits
MTYPE A4 22 32-bit address
MTYPE A8 23 64-bit address
MTYPE C10 24 80-bit IEEE complex
MTYPE C16 25 128-bit IEEE complex
MTYPE I16 26 128-bit signed integer
MTYPE U16 27 128-bit unsigned integer

fld/tylist/arb : Index to one of the tables that provide additional type information, depending on the
value of kind (see Tabler 2.16). For KIND SCALAR, KIND POINTER and KIND VOID, this field is
zero.

name idx : The name of the type. For anonymous types, this field should be zero.

etype/pointed/pu flags : For KIND ARRAY, etype gives the type of the array element. For

56 CHAPTER 2. WHIRL SYMBOL TABLE

Table 2.18: Miscellaneous Attributes of a TY
Entry Flag/Value Description
TY IS CHARACTER 0x0001 Fortran character type
TY IS LOGICAL 0x0002 Fortran logical type
TY IS UNION 0x0004 type is a union; only valid for KIND STRUCT
TY IS PACKED 0x0008 struct or class is packed
TY PTR AS ARRAY 0x0010 treat pointer as array (used by whirl2c/whirl2f)
TY ANONYMOUS 0x0020 anonymous struct/class/union; only valid for KIND STRUCT
TY SPLIT 0x0040 split from a larger common block
TY IS F90 POINTER 0x0080 pointer is subject to F90 alias rules
TY NOT IN UNION 0x0100 type cannot be part of a union

KIND POINTER, pointed gives the type that it points to. For KIND FUNCTION, pu flags contains
attributes of the function. For all other values of kind, this field is zero.

Types that are structurally identical can share common TY entries in order to minimize the size of
TY TAB.

Table 2.19: Attributes of a Function
Flag Value Description
TY NO ANSI ALIAS 0x0200 ANSI alias rules do not apply

TY IS NON POD 0x0400

a C++ non-pod structure

• constructor/destructor calls must be gener-
ated when creating a temp. variable of this
type (usually done by the frontend)

TY RETURN TO PARAM 0x00000001

a function returning a struct that is larger than
twice the size of the largest integer type

• an additional argument (first) is passed
which contains the address where the return
value is to be placed

TY IS VARARGS 0x00000002

allows variable number of arguments

• the last formal parameter is a descriptor of
the variable part of the parameter list

TY HAS PROTOTYPE 0x00000004 function has ANSI-style prototype defined.

2.7 FLD TAB

Each entry of this table gives information about a field in a struct or union. The TY of the struct type
points to the FLD entry for the first field. The remaining fields follow in consecutive FLD TAB entries until
a flag indicates it is the last field. The FLD entry has the following structure, size 24 bytes:

name idx : STR IDX to the name string, 0 if anonymous.

type: The TY IDX of this field. If ofst is equal to the total sizeof the struct, the size of the type pointed to
by type must be zero.

2.7. FLD TAB 57

Table 2.20: Valid Combinations of TY Kinds and WHIRL Data Types
Kind Valid WHIRL data type
KIND SCALAR all mtypes except MTYPE UNKNOWN and MTYPE V
KIND ARRAY

MTYPE UNKNOWN and MTYPE M
KIND STRUCT

MTYPE M
KIND POINTER

MTYPE U4 or MTYPE U8 (for MIPS) MTYPE A4 or
MTYPE A8 (for Merced)

KIND FUNCTION
MTYPE UNKNOWN

KIND VOID MTYPE V

Table 2.21: Layout of FLD
Offset Field Description Field size
byte 0 name idx STR IDX to the name string 1 word
byte 4 type TY IDX of field 1 word
byte 8 ofst offset within struct in bytes 2 words
byte 16 bsize bit field size in bits 1 byte
byte 17 bofst bit field offset starting at byte specified by 1 byte
byte 18 flags FLD flags 2 bytes
byte 20 st ST IDX to the ST entry, if any. 4 bytes

Table 2.22: Miscellaneous Attributes of an FLD Entry
Flag Value Description
FLD LAST FIELD 0x0001 indicate the last field in a struct
FLD EQUIVALENCE 0x0002 this field belongs to an equivalence of a common

block (i.e., overlaps in memory with other common
block element(s))

FLD BEGIN UNION 0x0004 beginning of a union in a Fortran record
FLD END UNION 0x0008 end of a union in a Fortran record
FLD BEGIN MAP 0x0010 beginning of a map in a Fortran record
FLD END MAP 0x0020 end of a map in a Fortran record

FLD IS BIT FIELD 0x0040

indicate a bit field

• bsize and bofst are valid only if this flag is
set

ofst : The byte offset of this field within the struct. This must be less than or equal to the total size of the
struct.

When the offset is equal to the size of the struct, type must be an TY IDX of a type with zero size.

bsize : The size of the bit field in number of bits. Valid only if FLD IS BIT FIELD is set; must be zero
otherwise.

bofst : The bit field offset starting at the byte specified by ofst. Valid only if FLD IS BIT FIELD is set;
must be zero otherwise.

flags : Miscellaneous attributes, see Table 2.22.

st : ST IDX to the (optional) ST entry corresponding to this field.

58 CHAPTER 2. WHIRL SYMBOL TABLE

• typically used for common block elements where each element has a separate ST entry.

• the ST entry must be one in the global symbol table.

• when not set, must be zero.

2.8 TYLIST TAB

Each entry of this table gives the type of each parameter in a function prototype. The TY of the function
prototype points to the TYLIST entry that gives the return type. The ensuing entries give the types of
the parameters. A TY IDX value of 0 specifies the end of the parameter list. The TYLIST entry has the
following structure:

Table 2.23: Layout of TYLIST
Offset Field Description Field size
byte 0 type TY IDX to the type 1 word

2.9 ARB TAB

Each entry of this table gives information about a dimension of an array. The TY of the array type points
to the ARB entry for the first dimension, indicated by ARB FIRST DIMEN. For C/C++ arrays, this
corresponds to the leftmost dimension. For Fortran arrays, this corresponds to the right-most dimension.
The remaining dimensions follow in consecutive ARB TAB entries until an entry with ARB LAST DIMEN
set. The dimension of the array must be specified in dimension of every entry.

The ARB entry has the following structure, size 32 bytes:

Table 2.24: Layout of ARB
Offset Field Description Field size
byte 0 flags misc. attributes 2 bytes
byte 2 dimension dimension of the array 2 bytes
byte 4 unused unused, must be filled with zeros 1 word
byte 8 lbnd val constant lower bound value 2 words
byte 8 lbnd var ST IDX of variable that stores the non-constant lower bound 1 word
byte 12 lbnd unused filler for lbnd var, must be zero 1 word
byte 16 ubnd val constant upper bound value 2 words
byte 16 ubnd var ST IDX of variable that stores the non-constant upper bound 1 word
byte 20 ubnd unused filler for ubnd var, must be zero 1 word
byte 24 stride val constant stride 2 words
byte 24 stride var ST IDX of variable that stores the non-constant stride 1 word
byte 28 stride unused filler for stride var, must be zero 1 word

Table 2.25: Miscellaneous Attributes of an ARB Entry
Flag Value Description
ARB CONST LBND 0x0001 lower bound is constant
ARB CONST UBND 0x0002 upper bound is constant
ARB CONST STRIDE 0x0004 stride is constant
ARB FIRST DIMEN 0x0008 current dimension is first
ARB LAST DIMEN 0x0010 current dimension is last

2.10. TCON TAB 59

2.10 TCON TAB

Each entry of this table is the TCON for storing integer, floating point or string constant values. The first
three entries of this table are reserved. The first entry (index 0) is reserved for uninitialized index value.
The second entry (index 1) always contains 4-byte floating point value 0.0. the third entry (index 2) always
contains 8-byte floating point value 0.0. These entries are shared. All other values are entered independently
without checking for duplicates. The TCON entry has the following structure, size 40 bytes:

Table 2.26: Layout of TCON
Offset Field Description Field size
byte 0 ty WHIRL data type, see Table 2.17 1 word
byte 4 flags misc. attributes 1 word
byte 8 ival signed integer (MTYPE I1, MTYPE I2, and

MTYPE I4)
1 word

byte 8 uval unsigned integer (MTYPE U1, MTYPE U2, and
MTYPE U4)

1 word

byte 8 i0 64-bit signed integer (MTYPE I8) 2 words
byte 8 k0 64-bit unsigned integer (MTYPE U8) 2 words
byte 8 fval 32-bit floating point (MTYPE F4)real part for 32-

bit complex (MTYPE C4)
1 word

byte 8 dval 64-bit floating point (MTYPE F8)real part for 64-
bit complex (MTYPE C8)

2 words

byte 8 qval 128-bit floating point (MTYPE FQ)real part for
128-bit complex (MTYPE CQ)

4 words

byte 8 sval

string literal (MTYPE STR/MTYPE STRING)

• byte 8 holds a character pointer (1 word)

• byte 12 holds the number of bytes of the
string (1 word)

3 words

byte 24 fival imaginary part for 32-bit complex(MTYPE C4) 1 word
byte 24 dival imaginary part for 64-bit complex(MTYPE C8) 2 words
byte 24 qival imaginary part for 128-bit complex(MTYPE CQ) 4 words

2.11 INITO TAB

Each entry of this table connects an initialized global or static data object with an INITV entry (see Section
2.11), which describes the initial values. Each entry of this table is an INITO, which is identified by a value
of type INITO IDX.

2.11.1 INITO IDX

INITO IDX has an identical structure as a ST IDX. It is of size 32 bits, and is composed of two parts:

Table 2.27: Layout of INITO IDX
Field Description Field position and size
level lexical level least significant 8 bits
index index to INITO TAB most significant 24 bits

The low order 8 bits are used to index into the SCOPE array in order to get to the INITO TAB.

60 CHAPTER 2. WHIRL SYMBOL TABLE

2.11.2 INITO Entry

The INITO entry has the following structure, size 8 bytes:

Table 2.28: Layout of INITO
Offset Field Description Field size
byte 0 st idx ST IDX of the variable to be initialized 1 word
byte 4 val INITV IDX of the initial values description 1 word

2.12 INITV TAB

Each entry of this table specifies the initial value of a scalar component of a data object. Initial values of
complex data objects are described by a tree of INITV entries, the root of which specified by the INITV IDX
of an INITO.

The INITV entry has the following structure, size 16 bytes:

Table 2.29: Layout of INITV

Offset Field Description Field size
byte 0 next INITV IDX for the value of the next array element

or the field in a struct
1 word

byte 4 kind kind of the INITV, see Table 2.30. 2 bytes
byte 6 repeat1 repeat factor except for INITVKIND VAL 2 bytes
byte 8 st ST IDX of symbol for INITVKIND SYMOFF 1 word
byte 8 lab LABEL IDX of symbol for INITVKIND LABEL 1 word
byte 8 lab1 LABEL IDX of label for

INITVKIND SYMDIFF(16)
1 word

byte 8 mtype WHIRL data type for INITVKIND ZERO and
INITVKIND ONE

1 word

byte 8 tc TCON IDX for INITVKIND VAL 1 word
byte 8 blk INITV IDX for INITVKIND BLOCK 1 word
byte 8 pad padding in bytes 1 word
byte 12 ofst byte offset from st for INITVKIND SYMOFF 1 word
byte 12 st2 ST IDX of symbol for

INITVKIND SYMDIFF(16)
1 word

byte 12 repeat2 repeat factor for INITVKIND ZERO,
INITVKIND ONE, and INITVKIND VAL

1 word

byte 12 unused filler for INITVKIND BLOCK,
INITVKIND PAD, and INITVKIND LABEL,
must be zero

1 word

next/blk : The values of a data object are specified by a tree of INITVs, with the root of the tree pointed
to by the INITO. INITVs specifying scalars are linked up by the next field, each of which contains an
INITV IDX. The end of a link is specified by a zero INITV IDX. Aggregate values are grouped into a
separate links headed by the blkfield, which must not be the zero INITV IDX.

kind : Kind of this INITV entry, see Table 2.30.

2.13. BLK TAB 61

Table 2.30: INITVKIND

Name Value Description
INITVKIND SYMOFF 1 value is the address of the symbol (st) plus offset

(ofst)
INITVKIND ZERO 2 integer value zero
INITVKIND ONE 3 integer value one
INITVKIND VAL 4 an integer, floating point, or string, specified by a

TCON (tc)
INITVKIND BLOCK 5 specifies another list or tree of INITVs
INITVKIND PAD 6 amount of padding in bytes
INITVKIND SYMDIFF 7 value is the difference of the addresses of a label

and a symbol (lab1 - st2)
INITVKIND SYMDIFF16 8 same as INITVKIND SYMDIFF, except the value

is 2 bytes in size
INITVKIND LABEL 9 value is the address of the label (lab)

repeat1 : Specifies the repeat factor of the value in this INITV entry. This cuts down the number of
unnecessary duplicates. A repeat factor of one means only one instance of the value is needed. The
repeat factor is never zero, except for INITVKIND ZERO, INITVKIND ONE, and INITVKIND VAL,
which use repeat2 instead.

st/ofst : For INITVKIND SYMOFF, the value of this entry is equal to the address of the symbol specified
by st, plus the byte offset specified by ofst.

label : For INITVKIND LABEL, the value of this entry is equal to the address of the label specified by
lab.

lab1/st2 : For INITVKIND SYMDIFF or INITVKIND SYMDIFF16, the value of this entry is equal to
the difference between the addresses of the label specified by lab1 and of the symbol specified by st2.
It is a signed value equal to (lab1 - st2). For INITVKIND SYMDIFF16, thesize of the value is 2 bytes.

mtype/repeat2 : For INITVKIND ZERO and INITVKIND ONE, this entry specifies an integral value of
zero and one respectively. The WHIRL data type (signed/unsigned, size, etc.)is specified by mtype. It
uses repeat2 as its repeat factor instead of repeat1.

tc/repeat2 : For INITVKIND VAL, this specifies a TCON for the scalar constant value. It uses repeat2
as its repeat factor instead of repeat1.

pad : For INITKIND PAD, this specifies the padding in bytes. The padded value is undefined.

2.13 BLK TAB

Each entry of this table gives information about the layout of a data block, which corresponds to a contiguous
chunk of memory in the user program. Program variables are laid out with respect to data blocks. This
table is created by the back end and is usually local to the back end, but can be written out to the file. The
BLK entry has the following structure, size 16 bytes:

Table 2.31: Layout of BLK

Offset Field Description Field size

62 CHAPTER 2. WHIRL SYMBOL TABLE

Table 2.31: Layout of BLK

Offset Field Description Field size
byte 0 size size of the block 2 words
byte 8 align alignment of the blocks: 1, 2, 4, 8 2 bytes
byte 10 flags flags for this field, see Table 2.32 2 bytes

byte 12 section idx
section index (0 if not a section)

• refers to the section info in data layout.cxx 2 bytes

byte 14 scninfo idx

Elf scninfo idx (0 if not a section)

• refers to the Elf section info in cgemit.cxx 2 bytes

Table 2.32: Miscellaneous Attributes of a BLK Entry

Flag Value Description
BLK SECTION 0x0001 represents an Elf section
BLK ROOT BASE 0x0002 block should not be merged
BLK IS BASEREG 0x004 block that maps into a register
BLK DECREMENT 0x0008 grow block by decrementing
BLK EXEC 0x0010 executable instructions (SHF EXEC)
BLK NOBITS 0x0020 occupies no space in file (SHT NOBITS)
BLK MERGE 0x0040 merge duplicates in linker (SHF MERGE)

BLK COMPILER LAYOUT 0x0080

layout of all symbols within this block is done by
the compiler

• this implies that user’s code cannot legally
use address arithmetic to move from one of
the symbols to another

2.14 STR TAB

This table holds all character strings for names of symbols, types, labels, etc. This table can be viewed as
a block of storage area for character strings. STR IDX is the index to this table, and is actually an offset
in this block of storage; it gives the byte offset of the starting character of a literal string. All strings are
null-terminated, and the first character of the block is always null. Thus, a zero STR IDX represents a null
string. Wide characters or unicode for names are not yet supported.

2.15 TCON STR TAB

This table holds all character strings defined in the user program. It is very similar to STR TAB, with the
exception that the strings need not be null-terminated, and null characters are allowed anywhere within the
string. The exact length of each string is explicitly specified.

2.16 LABEL TAB

Each entry of this table is a LABEL, which gives the information associated with a WHIRL label. The index
to this table is the WHIRL label number.

The LABEL entry has the following structure:

2.17. PREG TAB 63

Table 2.33: Layout of LABEL
Offset Field Description Field size
byte 0 name idx STR IDX to the name string, must be zero if no name 1 word
byte 4 flags LABEL flags 3 bytes
byte 7 kind kind of label 1 byte

Table 2.34: LABEL
Kind Name Value Description
LKIND DEFAULT 0 ordinary label
LKIND ASSIGNED 1
LKIND BEGIN EH RANGE 2
LKIND END EH RANGE 3
LKIND BEGIN HANDLER 4
LKIND END HANDLER 5

Table 2.35: Miscellaneous Attributes of an LABEL Entry
Flag Value Description
LABEL TARGET OF GOTO OUTER BLOCK 0x000001 control might be passed from out-

side of the current block to this
label.

LABEL ADDR SAVED 0x000002 address of this label is saved to a
variable

LABEL ADDR PASSED 0x000040 address of this label is passed to
another PU as actual parameter
PREG TAB

2.17 PREG TAB

Each entry of this table is a PREG, which gives the information associated with a pseudo-register in WHIRL.
Pseudo-register numbers 0–71 are reserved for dedicated hardware pseudo-registers. All compiler-generated
pseudo-registers start with number 72. As a result, the index to this table is the pseudo-register number,
minus 71 (Note: by definition, index 0 to the PREG TAB is reserved for undefined value). The PREG entry
has the following structure:

Table 2.36: Layout of PREG
Offset Field Description Field size
byte 0 name idx STR IDX to the name string, must be zero if no name 1 word

64 CHAPTER 2. WHIRL SYMBOL TABLE

2.18 ST ATTR TAB

Each entry of this table associates certain attribute with an ST entry. Symbol attributes specified here
usually cannot be represented by a single bit, and are possessed by a very small subset of the ST entries, and
thus are too expensive to be included as part of the ST entry proper. For most PU, this table is expected
to be empty.

The ST ATTR entry has the following structure, size 12 bytes:

Table 2.37: Layout of ST ATTR
Offset Field Description Field size
byte 0 st idx ST IDX of the corresponding symbol 1 word
byte 4 kind kind of the ST ATTR, see Table 2.38 1 word

byte 8 reg id

dedicated (physical) register associated with this
symbol

• symbol must have
ST ASSIGNED TO DEDICATED PREG
bit set

1 word

byte 8 section name

STR IDX of the name of the Elf section where this
symbol is defined

• symbol must be in global scope
1 word

Table 2.38: Kinds of ST ATTR
Name Value Description
ST ATTR DEDICATED REGISTER 0 dedicated register
ST ATTR SECTION NAME 1 section name

2.19 FILE INFO

This structure is not really part of the symbol table, it holds miscellaneous information that is derived from
the symbol table but does not fit well in any global symbol table. Typically, this information is needed by
the compiler backend to set up proper mode of operation before any PU is processed.

A FILE INFO has the following structure, size 8 bytes:

Table 2.39: Layout of FILE INFO
Offset Field Description Field size
byte 0 flags misc. attributes, see Table 2.40 1 word
byte 4 gp group gp-group id of this file, 0 for single GOT file 1 byte
byte 5 unused unused, must be zero 3 bytes

2.20 Backend-Specific Tables

This section describes addition symbol tables that are created and used solely by the compiler backend.
Each entry in these tables holds addition information associated with the corresponding regular symbol
table entries. They are discarded at the end of the backend’s processing and are never written out to a

2.20. BACKEND-SPECIFIC TABLES 65

Table 2.40: Miscellaneous Attributes of FILE INFO
Flag Value Description
FI IPA 0x00000001 IPA generated file
FI NEEDS LNO 0x00000002 some PUs in this file has the flag PU MP NEEDS LNO set
FI HAS INLINES 0x00000004 some PUs in this file has the flag PU HAS INLINES set
FI HAS MP 0x00000008 some PUs in this file has the flag PU HAS MP set

file. Note that these tables are not part of the WHIRL symbol table specification and are implementation
specific. The following descriptions apply only to the current implementation of the Open64 compiler.

2.20.1 BE ST TAB

This table is parallel to the ST TAB. Each entry of this table is a BE ST, which corresponds to an ST entry.
The same ST IDX is used to index an BE ST entry in a BE ST TAB and the corresponding ST entry in the
ST TAB.

The BE ST entry has the following structure, size 8 bytes:

Table 2.41: Layout of BE ST
Offset Field Description Field size
byte 0 flags BE ST flags 1 word
byte 4 io auxst pointer to an internal data structure used by the Fortran I/O routines. 1 word

Table 2.42: Miscellaneous Attributes of an BE ST entry

Flag Value Description

BE ST ADDR USED LOCALLY 0x00000001

address of this symbol is taken somewhere within the
current PU

• this flag is computed based on the backend’s
analysis

BE ST ADDR PASSED 0x00000002

address if this symbol is passed by reference

• this flag is computed based on the backend’s
analysis

• this flag is different from ST ADDR PASSED,
which is set by the frontend based on the
source language’s semantics

BE ST W2FC REFERENCED 0x00000004 whirl2c or whirl2f sees a reference to this symbol

BE ST UNKNOWN CONST 0x00000008

symbol is a constant but with unknown value

• generated by LNO

BE ST PU HAS VALID ADDR FLAGS 0x00000010

indicate that the BE ST ADDR USED LOCALLY
and BE ST ADDR PASSED bits are valid for the
PU specified by corresponding ST entry.

• valid only for CLASS FUNC

• depending on the optimization level, the above
two BE ST ADDR flags might not be valid

• tail-call optimization can be performed only
when BE ST PU HAS VALID ADDR FLAGS
is set

66 CHAPTER 2. WHIRL SYMBOL TABLE

Table 2.42: Miscellaneous Attributes of an BE ST entry

Flag Value Description

BE ST PU NEEDS ADDR FLAG ADJUST 0x00000020

indicate that the ST ADDR SAVED and
ST ADDR PASSED bits are no longer valid

• typically set by the MP-lowerer

• needs to recompute the above two bits before
moving on the next phase in the backend

2.21 Symbol Table Interfaces

The symbol table interfaces are described in a separate document. An online version can be found in
http://sahara.mti.sgi.com/Projects/Symtab/porting.html/.

2.22 Symbol Table Programming Primer

(Based on: Mike Fagan and Nathan Tallent. “Design and Implementation of whirl2xaif and xaif2whirl.”
Rice Technical Report, TR03-16, 2003.)

WHIRL’s symbol table can be difficult to work with. What follows are some important things we have
learned about it.

First, it is implemented in C++ (templates and classes) with a C function wrappers for an interface!
Most likely (or one hopes!) this has something to do with code reuse, where the symbol table implementation
was rewritten but its interface was preserved.

Secondly, WHIRL’s scoped symbol table works as advertised for intra-procedural operations. However,
once one desires to examine symbol tables in an inter-procedural fashion, the full moon rises and the werewolf
starts to howl. Or at least it seems that way.

Most significantly in this connection, it is important to realize that a WHIRL PU – program unit,
representing a procedure or function – is not a self-contained encapsulation. Instead, it is a wrapper for
a WHIRL tree and some PU specific symbol tables. However, nodes in the WHIRL tree contain symbol
table references that do not point directly into these tables, but refer to tables within the global Scope tab[]
(Scope Table), the table of the current visible lexical scopes. Consequently, while multiple WHIRL trees
and symbol table can reside in memory, the only way to access the symbols for a PU is when it is within
the current lexical scope. Hence all the symbol table references in other WHIRL trees effectively point to
junk. The global ‘current’ pointers must be updated each time one moves to a different PU. Because Open64
did not provide a good way of switching between PUs during inter-procedural algorithms, we developed a
tolerable way of doing so.

Thirdly, types in the WHIRL symbol table are sometimes difficult to keep straight. Here are the most
important types:

SYMTAB Not actually a type, but refers to all of the tables at a particular level/scope. Besides a global
scope, there is a local scope for each nested PU. Each scope contains a number of different tables,
some of which are common to all levels (e.g. ST TAB) and some of which are specific to global (e.g.
PU TAB) or local levels (e.g. LABEL TAB).

SYMTAB IDX The type of an index into the scope table Scope tab[]. The global scope is always at the
index GLOBAL SYMTAB; the scope for the current lexical PU is at index CURRENT SYMTAB.
(This is set by the WHIRL reader function Read Local Info().)

ST TAB The type of the symbol table proper, a table that appears at all lexical levels.

ST IDX A two-part index into any ST TAB within the Scope tab[]. The two-part bit field contains an
index into the ST TAB at a certain lexical level.

ST The type of a ST TAB entry.

2.22. SYMBOL TABLE PROGRAMMING PRIMER 67

And here are the global data that actually implement the symbol table:

Scope tab[] An array of SCOPEs, indexed by SYMTAB IDX, the lexical level. A SCOPE contains pointers
to all the tables for a lexical level, including a ST TAB.

St Table[] Essentially a class wrapper for Scope tab[] with member functions for in-
dexing both the Scope tab[] and the appropriate ST TAB with a ST IDX. (TA-
BLE INDEXED BY LEVEL8 AND INDEX24)

68 CHAPTER 2. WHIRL SYMBOL TABLE

Chapter 3

Appendix

69

70 CHAPTER 3. APPENDIX

List of Figures

1.1 Continuous Lowering in the Open64 Compiler . 7
1.2 Form for VFCALL . 17
1.3 Effects of CSEs on TAS’s . 26
1.4 Example of appearance of TAS . 27
1.5 ASCII Formats for Structured Control Flow Statements . 36

2.1 Whirl symbol table produced by the front ends. 38

71

Index

ABS, 27
ADD, 13, 26, 29
AFFIRM, 18
AGOTO, 14
ALLOCA, 19, 29
ALTENTRY, 14, 24
ARB, 58
ARB CONST LBND, 58
ARB CONST STRIDE, 58
ARB CONST UBND, 58
ARB FIRST DIMEN, 58
ARB IDX, 55
ARB LAST DIMEN, 58
ARB TAB, 37, 58
ARRAY, 8, 11, 12, 17, 33, 34
ARRAYEXP, 6, 34
ARRSECTION, 6, 34
ASHR, 32
ASM CONSTRAINT, 17
ASM INPUT, 16, 17, 29
ASM STMT, 16, 17
ASSERT, 12, 18

BACKWARD BARRIER, 19
BAND, 31
BE ST, 65, 66
BE ST ADDR, 65
BE ST ADDR PASSED, 65
BE ST ADDR USED LOCALLY, 65
BE ST PU HAS VALID ADDR FLAGS, 65
BE ST PU NEEDS ADDR FLAG ADJUST, 66
BE ST TAB, 38, 65
BE ST UNKNOWN CONST, 65
BE ST W2FC REFERENCED, 65
BIOR, 31
BLK, 61, 62
BLK COMPILER LAYOUT, 62
BLK DECREMENT, 62
BLK EXEC, 62
BLK IDX, 40
BLK IS BASEREG, 62
BLK MERGE, 62
BLK NOBITS, 62
BLK ROOT BASE, 62
BLK SECTION, 62

BLK TAB, 37
BLOCK, 10–14, 17, 32, 35, 36
BNOR, 31
BNOT, 28
BXOR, 31

CALL, 16
CAND, 8, 31
CASEGOTO, 14
CEIL, 24, 27
CIOR, 8, 31
CLASS BLOCK, 40–42, 45
CLASS CONST, 41, 42, 44, 46
CLASS FUNC, 41, 42, 65
CLASS MODULE, 41
CLASS NAME, 40–42
CLASS PARAMETER, 41
CLASS PREG, 41, 42
CLASS TYPE, 41
CLASS UNK, 41, 42
CLASS VAR, 41, 42, 46–49
COMMA, 6, 8, 16, 31, 32
COMMENT, 18
COMPGOTO, 8, 12, 14
COMPOSE BITS, 8, 12, 22, 32
CONST, 24
CSELECT, 6, 32
CVT, 24
CVTL, 12, 24, 34

DEALLOCA, 19, 29
DIV, 30
DIVREM, 28, 30
DO LOOP, 8, 13, 15, 36
DO WHILE, 8, 13, 36
DSO, 42–44

END BLOCK, 36
EQ, 31
EVAL, 17
EXPORT HIDDEN, 43, 44
EXPORT INTERNAL, 43
EXPORT LOCAL, 39, 42, 43, 45, 49
EXPORT LOCAL INTERNAL, 42–45
EXPORT OPTIONAL, 43
EXPORT PREEMPTIBLE, 23, 43, 44

72

INDEX 73

EXPORT PREEMTIBLE, 42
EXPORT PROTECTED, 43
EXTRACT BITS, 8, 12, 22, 28

FALSEBR, 8, 14
FI HAS INLINES, 65
FI HAS MP, 65
FI IPA, 65
FI NEEDS LNO, 65
FILE INFO, 64
FIRSTPART, 27
FLD, 56, 57
FLD BEGIN MAP, 57
FLD BEGIN UNION, 57
FLD END MAP, 57
FLD END UNION, 57
FLD EQUIVALENCE, 57
FLD IDX, 55
FLD IS BIT FIELD, 57
FLD LAST FIELD, 57
FLD TAB, 37, 56
FLOOR, 24, 28
FORWARD BARRIER, 18, 19
FUNC ENTRY, 11, 12, 14, 36

GE, 31
GOT, 51, 64
GOTO, 8, 13, 14, 33
GOTO OUTER BLOCK, 13
GT, 13, 31

HIGHMPY, 29, 30
HIGHPART, 28–30

ICALL, 16
IDNAME, 11–14, 24, 36
IF, 8, 13, 36
ILDA, 19, 25, 28
ILDBITS, 8, 12, 20–22, 29
ILOAD, 8, 12, 17, 20–22, 25, 26, 28
ILOADX, 21
INITO, 39, 45, 60
INITO IDX, 59
INITO TAB, 37, 39, 59
INITV, 59–61
INITV IDX, 60
INITV TAB, 37
INITVKIND BLOCK, 60, 61
INITVKIND LABEL, 60, 61
INITVKIND ONE, 60, 61
INITVKIND PAD, 61
INITVKIND SYMDIFF, 61
INITVKIND SYMOFF, 60, 61
INITVKIND VAL, 60, 61
INITVKIND ZERO, 60, 61

INTCONST, 24
INTRINSIC CALL, 16, 29, 34
INTRINSIC OP, 29, 33, 34
IO, 8, 16, 17, 33
IO ITEM, 8, 17, 33
IPA, 53
ISTBITS, 8, 12, 20–22, 32
ISTORE, 8, 16, 20–22, 25, 26, 35
ISTOREX, 21

KIND ARRAY, 55, 57
KIND FUNCTION, 54, 55, 57
KIND INVALID, 55
KIND POINTER, 55, 57
KIND SCALAR, 55, 57
KIND STRUCT, 55, 57
KIND VOID, 55, 57

LABEL, 15, 62, 63
LABEL ADDR PASSED, 63
LABEL ADDR SAVED, 63
LABEL IDX, 60
LABEL TAB, 38, 39
LABEL TARGET OF GOTO OUTER BLOCK,

63
LAND, 31
LDA, 8, 10, 12, 19, 22, 23, 25, 26
LDA LABEL, 23
LDBITS, 8, 12, 20–22, 29
LDID, 8, 12, 15–23, 25, 26, 28
LDMA, 23
LE, 13, 31
LIOR, 31
LKIND ASSIGNED, 63
LKIND BEGIN EH RANGE, 63
LKIND BEGIN HANDLER, 63
LKIND DEFAULT, 63
LKIND END EH RANGE, 63
LKIND END HANDLER, 63
LNO, 52, 65
LNOT, 28
LOOP INFO, 12, 15
LOWPART, 28–30
LSHR, 32
LT, 13, 31

MADD, 32
MAX, 30, 31, 34
MAXPART, 28, 31
MEM POOL, 39
MIN, 30, 31, 34
MINMAX, 28, 30, 31
MINPART, 28, 31
MLOAD, 21, 25
MOD, 30

74 INDEX

MPY, 28–30
MSTORE, 21, 25
MSUB, 33
MTYPE A4, 55, 57
MTYPE A8, 55, 57
MTYPE BS, 55
MTYPE C10, 55
MTYPE C16, 55
MTYPE C4, 55
MTYPE C8, 55
MTYPE CQ, 55
MTYPE FQ, 55
MTYPE I16, 55
MTYPE M, 55, 57
MTYPE U16, 55
MTYPE U4, 57
MTYPE U8, 57
MTYPE UNKNOWN, 57
MTYPE V, 55, 57

NE, 31
NEG, 27
NMADD, 33
NMSUB, 33

PAIR, 29
PAREN, 24, 27
PARM, 12, 16, 17, 29, 33
PICCALL, 8, 16, 29
PRAGMA, 11, 12, 17, 18
PREFETCH, 12, 18
PREFETCHX, 18
PREG, 63
PREG TAB, 38, 39, 63
PU, 38, 39, 41, 42, 46, 48–53, 63–65
PU ARGS ALIASED, 52
PU C LANG, 53
PU CALLS LONGJMP, 52
PU CALLS SETJMP, 52
PU CXX LANG, 51, 53
PU F77 LANG, 52, 53
PU F90 LANG, 52, 53
PU HAS ALLOCA, 52
PU HAS ALTENTRY, 52
PU HAS EXC SCOPES, 51
PU HAS GLOBAL PRAGMAS, 53
PU HAS INLINES, 52, 65
PU HAS MP, 52, 65
PU HAS NAMELIST, 52
PU HAS NON MANGLED CALL, 52
PU HAS REGION, 52
PU HAS RETURN ADDRESS, 52
PU HAS USER ALLOCA, 53
PU HAS VERY HIGH WHIRL, 52

PU IDX, 40
PU IN ELF SECTION, 52
PU IPA ADDR ANALYSIS, 53
PU IS INLINE FUNCTION, 51
PU IS MAINPU, 52
PU IS NESTED FUNC, 52
PU IS PURE, 51
PU JAVA LANG, 53
PU MIXED LANG, 53
PU MP, 52
PU MP NEEDS LNO, 52, 65
PU MUST INLINE, 51
PU NEEDS FILL ALIGN LOWERING, 52
PU NEEDS T9, 52
PU NO DELETE, 49, 51
PU NO INLINE, 49, 51
PU NO SIDE EFFECTS, 51
PU RECURSIVE, 52
PU SMART ADDR ANALYSIS, 53
PU TAB, 37
PU UNKNOWN LANG, 53
PU UPLEVEL, 52

RCOMMA, 6, 8, 31, 32
RECIP, 27
REGION, 12–14
REGION EXIT, 12, 14
REM, 30
RETURN, 15
RETURN VAL, 15
RND, 24, 27
RROTATE, 32
RSQRT, 27

SCLASS AUTO, 41, 42, 45, 49
SCLASS COMMENT, 41, 42
SCLASS COMMON, 41, 42, 44
SCLASS CPLINIT, 41, 42
SCLASS DGLOBAL, 41, 42, 44, 45
SCLASS DISTR ARRAY, 41, 42, 44
SCLASS EH REGION, 41, 42, 49, 50
SCLASS EH REGION

, 44
SCLASS EH REGION SUPP, 41, 42, 49, 50
SCLASS EXTERN, 41, 42, 44, 50
SCLASS FORMAL, 41, 42, 45, 47
SCLASS FORMAL REF, 41, 42, 46–48
SCLASS FSTATIC, 41, 42
SCLASS MODULE, 41
SCLASS PSTATIC, 41, 42, 46, 50
SCLASS TEXT, 41, 42, 44
SCLASS THREAD PRIVATE FUNCS, 41, 42
SCLASS UGLOBAL, 41, 42
SCLASS UNKNOWN, 41, 42, 45, 49

INDEX 75

SCLASS VAR, 48
SCOPE, 39, 51, 59
SECONDPART, 27
SELECT, 32
SHL, 32
SQRT, 27
ST, 39–42, 44–49, 54, 57, 58, 64, 65
ST ADDR PASSED, 48, 66
ST ADDR SAVED, 48, 53, 66
ST ASM FUNCTION ST, 40, 49
ST ASSIGNED TO DEDICATED PREG, 49, 64
ST ATTR, 39, 64
ST ATTR DEDICATED REGISTER, 64
ST ATTR SECTION NAME, 64
ST ATTR TAB, 37, 39
ST DECLARED STATIC, 47
ST EMIT SYMBOL, 46
ST GPREL, 46
ST HAS NESTED REF, 46
ST IDX, 39, 40, 45, 57, 58, 60, 64, 65
ST INIT VALUE ZERO, 45, 46
ST IS CONST VAR, 48
ST IS DATAPOOL, 46
ST IS EQUIVALENCED, 47
ST IS F90 TARGET, 47
ST IS FILL ALIGN, 47
ST IS INITIALIZED, 45, 46
ST IS NAMELIST, 47
ST IS OPTIONAL ARGUMENT, 47
ST IS RESHAPED, 46
ST IS RETURN VAR, 45
ST IS SHARED AUTO, 49
ST IS SPLIT COMMON, 40, 45
ST IS TEMP VAR, 48
ST IS THREAD PRIVATE, 49
ST IS VALUE PARM, 45
ST IS WEAK ALIAS, 40
ST IS WEAK SYMBOL, 45
ST KEEP NAME W2F, 46
ST NOT GPREL, 46
ST PROMOTE PARM, 46
ST PT TO COMPILER GENERATED MEM,

49
ST PT TO UNIQUE MEM, 48
ST TAB, 37, 39
STBITS, 8, 12, 20–22, 32
STID, 8, 12, 13, 16, 19, 20, 22, 25, 30, 31
STO OPTIONAL, 43
STR IDX, 40, 55–57, 62–64
STR TAB, 38
STRCTFLD, 28
SUB, 29
SWITCH, 12, 14

TARGET INFO TAB, 51
TAS, 24–26
TCON, 41, 59, 61
TCON IDX, 40, 60
TCON STR TAB, 38
TCON TAB, 37
TRAP, 12, 18
TRIPLET, 6, 34
TRUEBR, 8, 14
TRUNC, 24, 27
TY, 54–58
TY ANONYMOUS, 56
TY HAS PROTOTYPE, 56
TY IDX, 40, 51, 54–58
TY IS CHARACTER, 56
TY IS F90 POINTER, 56
TY IS LOGICAL, 56
TY IS NON POD, 56
TY IS PACKED, 56
TY IS UNION, 56
TY IS VARARGS, 56
TY NO ANSI ALIAS, 56
TY NOT IN UNION, 56
TY PTR AS ARRAY, 56
TY RETURN TO PARAM, 56
TY SPLIT, 56
TY TAB, 37, 54
TYLIST, 58
TYLIST IDX, 55
TYLIST TAB, 37

USE, 18

VFCALL, 16

WHERE, 6, 34
WHILE DO, 8, 13, 15, 36

XGOTO, 8
XMPY, 28–30
XPRAGMA, 17, 18

	1 Whirl Abstract Syntax Tree
	1.1 Introduction
	1.2 Compilation Targets
	1.3 The Levels of WHIRL
	1.3.1 Very High (VH) WHIRL
	1.3.2 High (H) WHIRL
	1.3.3 Mid (M) WHIRL
	1.3.4 Low (L) WHIRL
	1.3.5 Very Low (VL) WHIRL

	1.4 The Components of WHIRL
	1.4.1 Operators
	1.4.2 Result and Descriptor Types
	1.4.3 Supported Data Types
	1.4.4 Kid Pointers
	1.4.5 Next and Previous Pointers
	1.4.6 Offset
	1.4.7 Mapping Mechanism
	1.4.8 Source Position Information
	1.4.9 Additional Fields
	1.4.10 WHIRL Node Layout

	1.5 Structured Control Flow Statements
	1.6 Other Control Flow Statements
	1.7 Calls
	1.8 Other Statements
	1.9 Memory Accesses
	1.10 Bit-field Representation
	1.11 Pseudo-registers
	1.12 Other Leaf Operators
	1.13 Type Conversions
	1.14 High Level Type Specification
	1.15 Expression Operators
	1.15.1 Unary Operations
	1.15.2 Binary Operations
	1.15.3 Ternary Operations
	1.15.4 N-ary Operations

	1.16 Intrinsics
	1.17 Aggregates Specification
	1.18 ASCII WHIRL Format

	2 Whirl Symbol Table
	2.1 Introduction and Overview
	2.2 SCOPE
	2.3 ST_TAB
	2.4 ST_IDX
	2.4.1 ST Entry
	2.4.2 Symbol Class and Storage Class
	2.4.3 Export Scopes
	2.4.4 ST Flags
	2.4.5 Exception Handling Region
	2.4.6 Semantics of Weak Symbols

	2.5 PU_TAB
	2.5.1 TY_IDX

	2.6 TY_TAB
	2.6.1 TY entry

	2.7 FLD_TAB
	2.8 TYLIST_TAB
	2.9 ARB_TAB
	2.10 TCON_TAB
	2.11 INITO_TAB
	2.11.1 INITO_IDX
	2.11.2 INITO Entry

	2.12 INITV_TAB
	2.13 BLK_TAB
	2.14 STR_TAB
	2.15 TCON_STR_TAB
	2.16 LABEL_TAB
	2.17 PREG_TAB
	2.18 ST_ATTR_TAB
	2.19 FILE_INFO
	2.20 Backend-Specific Tables
	2.20.1 BE_ST_TAB

	2.21 Symbol Table Interfaces
	2.22 Symbol Table Programming Primer

	3 Appendix

